Thank you for choosing this Mitsubishi Inverter.
This Instruction Manual is intended for users who "just want to run the inverter".
If you are going to utilize functions and performance, refer to the FR-A701 Series Instruction Manual (Applied) [IB0600337ENG]. The Instruction Manual (Applied) is separately available from where you purchased the inverter or your Mitsubishi sales representative.

CONTENTS

1 OUTLINE 1
1.1 Product checking and parts identification
1.2 Inverter and peripheral devices 2
1.3 Method of removal and reinstallation of the front cover 4
1.4 Installation of the inverter and enclosure design6
2 WIRING 12
2.1 Terminal connection diagram. 12
2.2 Main circuit terminal specifications. 13
2.3 Control circuit specifications 20
2.4 Connection of motor with encoder (vector control) 28
3 PRECAUTIONS FOR USE OF THE INVERTER 35
3.1 EMC and leakage currents 35
3.2 Power-off and magnetic contactor (MC) 41
3.3 Inverter-driven 400 V class motor 42
3.4 Precautions for use of the inverter 43
3.5 Failsafe of the system which uses the inverter 45
4 DRIVING THE MOTOR 47
4.1 Step of operation. 47
4.2 Operation panel (FR-DU07) 48
4.3 Before operation 56
4.4 Start/stop from the operation panel (PU operation mode) 83
4.5 Start and stop using terminals (External operation). 92
4.6 Parameter List 100
5 TROUBLESHOOTING 141
5.1 Reset method of protective function 141
5.2 List of fault or alarm display 142
5.3 Causes and corrective actions 143
5.4 Correspondences between digital and actual characters 159
5.5 Check and clear of the faults history 160
5.6 Check first when you have a trouble 162
6 PRECAUTIONS FOR MAINTENANCE AND INSPECTION 170
6.1 Inspection item 170
6.2 Measurement of main circuit voltages, currents and powers 177
7 SPECIFICATIONS 182
7.1 Rating 182
7.2 Common specifications 184
7.3 Outline dimension drawings 185
7.4 Installation of the heatsink portion outside the enclosure for use 194

This section is specifically about safety matters

Do not attempt to install, operate, maintain or inspect the inverter until you have read through the Instruction Manual and appended documents carefully and can use the equipment correctly. Do not use this product until you have a full knowledge of the equipment, safety information and instructions.
In this Instruction Manual, the safety instruction levels are classified into "WARNING" and "CAUTION".

©WARNING

Incorrect handling may cause
hazardous conditions, resulting in death or severe injury.
\triangle CAUTION
Incorrect handling may cause hazardous conditions, resulting in medium or slight injury, or may cause only material damage.

The \triangle CAUTION level may even lead to a serious consequence according to conditions. Both instruction levels must be followed because these are important to personal safety.

1. Electric Shock Prevention

\triangle WARNING

- While power is ON or when the inverter is running, do not open the front cover. Otherwise you may get an electric shock.
- Do not run the inverter with the front cover or wiring cover removed. Otherwise you may access the exposed highvoltage terminals or the charging part of the circuitry and get an electric shock.
- Even if power is OFF, do not remove the front cover except for wiring or periodic inspection. You may accidentally touch the charged inverter circuits and get an electric shock.
- Before wiring or inspection, power must be switched OFF. To confirm that, LED indication of the operation panel must be checked. (It must be OFF.) Any person who is involved in wiring or inspection shall wait for at least 10 minutes after the power supply has been switched OFF and check that there are no residual voltage using a tester or the like. The capacitor is charged with high voltage for some time after power OFF, and it is dangerous.
- This inverter must be earthed (grounded). Earthing (grounding) must conform to the requirements of national and local safety regulations and electrical code (NEC section 250, IEC 536 class 1 and other applicable standards). A neutral-point earthed (grounded) power supply for 400 V class inverter in compliance with EN standard must be used.
- Any person who is involved in wiring or inspection of this equipment shall be fully competent to do the work.
- The inverter must be installed before wiring. Otherwise you may get an electric shock or be injured.
- Setting dial and key operations must be performed with dry hands to prevent an electric shock.
- Do not subject the cables to scratches, excessive stress, heavy loads or pinching. Otherwise you may get an electric shock.
- Do not change the cooling fan while power is ON. It is dangerous to change the cooling fan while power is ON.
- Do not touch the printed circuit board or handle the cables with wet hands. Otherwise you may get an electric shock.
- When measuring the main circuit capacitor capacity, the DC voltage is applied to the motor for 1s at powering OFF. Never touch the motor terminal, etc. right after powering OFF to prevent an electric shock.

2. Fire Prevention

\triangle CAUTION

- Inverter must be installed on a nonflammable wall without holes (so that nobody touches the inverter heatsink on the rear side, etc.). Mounting it to or near flammable material can cause a fire.
- If the inverter has become faulty, the inverter power must be switched OFF. A continuous flow of large current could cause a fire.
3.Injury Prevention

$\triangle C A U T I O N$

- The voltage applied to each terminal must be the ones specified in the Instruction Manual. Otherwise burst, damage, etc. may occur.
- The cables must be connected to the correct terminals. Otherwise burst, damage, etc. may occur.
- Polarity must be correct. Otherwise burst, damage, etc. may occur.
- While power is ON or for some time after power-OFF, do not touch the inverter as they will be extremely hot. Doing so can cause burns.

4. Additional Instructions

Also the following points must be noted to prevent an accidental failure, injury, electric shock, etc.
(1) Transportation and Mounting

\triangle CAUTION

- The product must be transported in correct method that corresponds to the weight. Failure to do so may lead to injuries.
- Do not stack the boxes containing inverters higher than the number recommended.
- The product must be installed to the position where withstands the weight of the product according to the information in the Instruction Manual.
- Do not install or operate the inverter if it is damaged or has parts missing.
- When carrying the inverter, do not hold it by the front cover or setting dial; it may fall off or fail.
- Do not stand or rest heavy objects on the product.
- The inverter mounting orientation must be correct.
- Foreign conductive objects must be prevented from entering the inverter. That includes screws and metal fragments or other flammable substance such as oil.
- As the inverter is a precision instrument, do not drop or subject it to impact.
- The inverter must be used under the following environment. Otherwise the inverter may be damaged.

	Surrounding air temperature	$-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ (non-freezing)
	Ambient humidity	90\%RH or less (non-condensing)
	Storage temperature	$-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C} * 1$
	Atmosphere	Indoors (free from corrosive gas, flammable gas, oil mist, dust and dirt)
	Altitude/ vibration	Maximum $1,000 \mathrm{~m}$ above sea level for standard operation. $5.9 \mathrm{~m} / \mathrm{s}^{2}$ or less at 10 to 55 Hz (directions of X, Y, Z axes)
	Temperatur	applicable for a short time, e.g. in transit.

(2) Wiring

\triangle CAUTION

- Do not install a power factor correction capacitor or surge suppressor/capacitor type filter on the inverter output side. These devices on the inverter output side may be overheated or burn out.
- The connection orientation of the output cables U, V, W to the motor affects the rotation direction of the motor.
(3) Trial run

(4) Usage

@ Why person must stay away from the equipment when the
\bullet Ans

- Since pressing $\frac{\text { STOP }}{\text { RESET }}$ key may not stop output depending on the function setting status, separate circuit and switch that make an emergency stop (power OFF, mechanical brake operation for emergency stop, etc.) must be provided.
- OFF status of the start signal must be confirmed before resetting the inverter fault. Resetting inverter alarm with the start signal ON restarts the motor suddenly.
- The inverter must be used for three-phase induction motors. Connection of any other electrical equipment to the inverter output may damage the equipment.
- Performing pre-excitation (LX signal and X13 signal) under torque control (Real sensorless vector control) may start the motor running at a low speed even when the start command (STF or STR) is not input. The motor may also run at a low speed when the speed limit value $=0$ with a start command input. It must be confirmed that the motor running will not cause any safety problem before performing pre-excitation.
- Do not modify the equipment.
- Do not perform parts removal which is not instructed in this manual. Doing so may lead to fault or damage of the product.

\triangle CAUTION

- The electronic thermal relay function does not guarantee protection of the motor from overheating. It is recommended to install both an external thermal and PTC thermistor for overheat protection.
- Do not use a magnetic contactor on the inverter input for frequent starting/stopping of the inverter. Otherwise the life of the inverter decreases.
- The effect of electromagnetic interference must be reduced by using a noise filter or by other means. Otherwise nearby electronic equipment may be affected.
- When driving a 400 V class motor by the inverter, the motor must be an insulation-enhanced motor or measures must be taken to suppress surge voltage. Surge voltage attributable to the wiring constants may occur at the motor terminals, deteriorating the insulation of the motor.
- When parameter clear or all parameter clear is performed, the required parameters must be set again before starting operations because all parameters return to the initial value.
- The inverter can be easily set for high-speed operation. Before changing its setting, the performances of the motor and machine must be fully examined.
- Stop status cannot be hold by the inverter's brake function. In addition to the inverter's brake function, a holding device must be installed to ensure safety.
- Before running an inverter which had been stored for a long period, inspection and test operation must be performed.
- For prevention of damage due to static electricity, nearby metal must be touched before touching this product to eliminate static electricity from your body.
(5) Emergency stop

\triangle CAUTION

- A safety backup such as an emergency brake must be provided to prevent hazardous condition to the machine and equipment in case of inverter failure.
- When the breaker on the inverter input side trips, the wiring must be checked for fault (short circuit), and internal parts of the inverter for a damage, etc. The cause of the trip must be identified and removed before turning ON the power of the breaker.
- When any protective function is activated, appropriate corrective action must be taken, and the inverter must be reset before resuming operation.
(6) Maintenance, inspection and parts replacement

\triangle CAUTION

- Do not carry out a megger (insulation resistance) test on the control circuit of the inverter. It will cause a failure.

(7) Disposal

General instruction

Many of the diagrams and drawings in this Instruction Manual (Basic) show the inverter without a cover or partially open for explanation. Never operate the inverter in this manner. The cover must be always reinstalled and the instruction in this Instruction Manual (Basic) must be followed when operating the inverter.

CONTENTS

1 OUTLINE

1.1 Product checking and parts identification 1
1.2 Inverter and peripheral devices 2
1.2.1 Peripheral devices 3
1.3 Method of removal and reinstallation of the front cover 4
1.4 Installation of the inverter and enclosure design 6
1.4.1 Inverter installation environment. 6
1.4.2 Cooling system types for inverter enclosure 9
1.4.3 Inverter placement 10
2 WIRING 12
2.1 Terminal connection diagram 12
2.2 Main circuit terminal specifications 13
2.2.1 Specification of main circuit terminal 13
2.2.2 Terminal arrangement of the main circuit terminal, power supply and the motor wiring 14
2.2.3 Cables and wiring length 16
2.2.4 When connecting the control circuit and the main circuit separately to the power supply 19
2.3 Control circuit specifications 20
2.3.1 Control circuit terminals 20
2.3.2 Changing the control logic 23
2.3.3 Control circuit terminal layout 25
2.3.4 Wiring instructions 25
2.3.5 When connecting the operation panel using a connection cable 26
2.3.6 RS-485 terminal block 26
2.3.7 Communication operation 27
2.3.8 USB connector 27
2.4 Connection of motor with encoder (vector control) 28
3 PRECAUTIONS FOR USE OF THE INVERTER 35
3.1 EMC and leakage currents 35
3.1.1 Leakage currents and countermeasures 35
3.1.2 EMC measures 37
3.1.3 Power supply harmonics 39
3.1.4 Harmonic suppression guideline 39
3.2 Power-off and magnetic contactor (MC) 41
3.3 Inverter-driven 400V class motor 42
3.4 Precautions for use of the inverter 43
3.5 Failsafe of the system which uses the inverter 45
4.1 Step of operation 47
4.2 Operation panel (FR-DU07) 48
4.2.1 Parts of the operation panel (FR-DU07) 48
4.2.2 Basic operation (factory setting) 49
4.2.3 Operation lock (Press [MODE] for an extended time (2s)) 50
4.2.4 Monitoring of output current and output voltage 51
4.2.5 First priority monitor 51
4.2.6 Setting dial push 51
4.2.7 Changing the parameter setting value 52
4.2.8 Parameter clear, all parameter clear 53
4.2.9 Parameter copy and parameter verification. 54
4.3 Before operation 56
4.3.1 Simple mode parameter list 56
4.3.2 Overheat protection of the motor by the inverter (Pr. 9) 57
4.3.3 When the rated motor frequency is 50 Hz (Pr. 3) 58
4.3.4 Increase the starting torque (Pr. 0) 59
4.3.5 Limit the maximum and minimum output frequency (Pr. 1, Pr. 2) 60
4.3.6 Change acceleration and deceleration time (Pr. 7, Pr. 8). 61
4.3.7 Selection of the start command and frequency command locations (Pr. 79) 62
4.3.8 Large starting torque and low speed torque are necessary (Advanced magnetic flux vector control, Real sensorless vector control) (Pr. 71, Pr. 80, Pr. 81, Pr. 800) 63
4.3.9 Higher accuracy operation using a motor with encoder (Vector control) (Pr.71, Pr.80, Pr.81, Pr.359, Pr.369, Pr.800) 66
4.3.10 Exhibiting the best performance of the motor performance (offline auto tuning) (Pr. 71, Pr. 83, Pr. 84, Pr. 96) 71
4.3.11 High accuracy operation unaffected by the motor temperature (online auto tuning) (Pr. 95) 76
4.3.12 To perform high accuracy/fast response operation (gain adjustment of Real sensorless vector control and vector control) (Pr. 818 to Pr. 821, Pr. 880) 77
4.4 Start/stop from the operation panel (PU operation mode) 83
4.4.1 Setting the set frequency to operate (example: performing operation at 30 Hz). 83
4.4.2 Use the setting dial like a potentiometer to perform operation. 85
4.4.3 Setting the frequency by switches (three-speed setting) 86
4.4.4 Setting the frequency by analog input (voltage input) 88
4.4.5 Setting the frequency by analog input (current input) 90
4.5 Start and stop using terminals (External operation) 92
4.5.1 Setting the frequency by the operation panel ($\operatorname{Pr} .79=3$), 92
4.5.2 Setting the frequency by switches (three-speed setting) (Pr. 4 to Pr. 6) 94
4.5.3 Setting the frequency by analog input (voltage input) 96
4.5.4 Changing the frequency (60 Hz , initial value) at the maximum voltage input (5 V , initial value) 97
4.5.5 Setting the frequency by analog input (current input) 98
4.5.6 Changing the frequency $(60 \mathrm{~Hz}$, initial value) at the maximum current input (at 20 mA , initial value) 99
4.6 Parameter List 100
4.6.1 List of parameters classified by the purpose 100
4.6.2 Parameter list 103
5 TROUBLESHOOTING 141
5.1 Reset method of protective function 141
5.2 List of fault or alarm display 142
5.3 Causes and corrective actions 143
5.4 Correspondences between digital and actual characters 159
5.5 Check and clear of the faults history 160
5.6 Check first when you have a trouble 162
5.6.1 Motor does not start 162
5.6.2 Motor or machine is making abnormal acoustic noise 164
5.6.3 Inverter generates abnormal noise 164
5.6.4 Motor generates heat abnormally 165
5.6.5 Motor rotates in the opposite direction 165
5.6.6 Speed greatly differs from the setting 165
5.6.7 Acceleration/deceleration is not smooth 166
5.6.8 Motor current is too large 166
5.6.9 Speed does not accelerate 167
5.6.10 Motor and machine vibrate 167
5.6.11 Speed varies during operation 168
5.6.12 Operation mode is not changed properly 169
5.6.13 Operation panel (FR-DU07) display is not operating 169
5.6.14 Power lamp is not lit 169
5.6.15 Unable to write parameter setting 169
6 PRECAUTIONS FOR MAINTENANCE AND INSPECTION 170
6.1 Inspection item 170
6.1.1 Daily inspection 170
6.1.2 Periodic inspection 170
6.1.3 Daily and periodic inspection 171
6.1.4 Display of the life of the inverter parts 172
6.1.5 Checking the inverter and converter modules 173
6.1.6 Cleaning 174
6.1.7 Replacement of parts 174
6.2 Measurement of main circuit voltages, currents and powers 177
6.2.1 Measurement of powers 179
6.2.2 Measurement of voltages and use of PT 179
6.2.3 Measurement of currents 180
6.2.4 Use of CT and transducer 180
6.2.5 Measurement of inverter input power factor 180
6.2.6 Measurement of converter output voltage (across terminals $\mathrm{P} /+$ and $\mathrm{N} /-$) 181
6.2.7 Measurement of inverter output frequency 181
6.2.8 Insulation resistance test using megger 181
6.2.9 Pressure test 181
7 SPECIFICATIONS 182
7.1 Rating 182
7.1.1 Inverter rating 182
7.1.2 Motor rating 183
7.2 Common specifications 184
7.3 Outline dimension drawings 185
7.3.1 Inverter outline dimension drawings 185
7.3.2 Dedicated motor outline dimension drawings 190
7.4 Installation of the heatsink portion outside the enclosure for use 194
7.4.1 Protrusion of heatsink. 194
APPENDICES 196
Appendix 1 Main differences and compatibilities with the FR-A700 series 196
Appendix 2 Instructions for compliance with the EU Directives (400V class only) 197
Appendix 3 Instructions for UL and cUL Compliance 199
Appendix 4 Control mode-based parameter (function) correspondence table and instruction code list 201
<Abbreviations>
DU: Operation panel (FR-DU07)
PU: Operation panel (FR-DU07) and parameter unit (FR-PU04, FR-PU07) Inverter: Mitsubishi inverter FR-A701 series
FR-A701: Mitsubishi inverter FR-A701 series
Pr.: Parameter Number (Number assigned to function)
PU operation: Operation using the PU (FR-DU07/FR-PU04/FR-PU07)
External operation: Operation using the control circuit signals
Combined operation: Co
Constant-torque motor: SF-HRCA
<Trademarks>
LoNWORKS ${ }^{\circledR}$ is registered trademarks of Echelon Corporation in the U.S.A. and other countries.
DeviceNet is a registered trademark of ODVA (Open DeviceNet Vender Association, Inc.).
Company and product names herein are the trademarks and registered trademarks of their respective owners.
REMARKS

[^0]
1 OUTLINE

1.1 Product checking and parts identification

Unpack the inverter and check the capacity plate on the front cover and the rating plate on the inverter side face to ensure that the product agrees with your order and the inverter is intact.

- Inverter Model

	$F R-A 721$	5.5 K
Symbol	Voltage Class	Indicate inverter
A721	Three-phase 200V class	capacity (kW)
A741	Three phase 400V	

- Accessory

- Eyebolt for hanging the inverter

Capacity	Eyebolt size	Quantity
$11 \mathrm{~K}, 15 \mathrm{~K}$	M 8	2
18.5 K to 30 K	M 10	2
37 K to 55 K	M 12	2

* The 5.5 K and 7.5 K are not provided with eyebolts.

REMARKS

For removal and reinstallation of covers, refer to page 4.
Harmonic suppression guideline (when inverters are used in Japan)
All models of general-purpose inverters used by specific consumers are covered by "Harmonic suppression guideline for consumers who receive high voltage or special high voltage". (For details, refer to page 39 .)

Cooling fan (Refer to page 175)

Fan cover
(Refer to page 175)

Fan block (Refer to page 175)

1.2 Inverter and peripheral devices

CAUTION

- Do not install a power factor correction capacitor, surge suppressor or radio noise filter on the inverter output side. This will cause the inverter to trip or the capacitor, and surge suppressor to be damaged. If any of the above devices are connected, immediately remove them. This inverter has a built-in AC reactor (FR-HAL) and a circuit type specified in Harmonic suppression guideline in Japan is threephase bridge (capacitor smoothed) and with reactor (AC side). (Refer to page 39) Do not use an AC reactor (FR-HAL) of a standalone option except following purpose. (Note that overload protection of the converter may operate when a thyristor load is connected in the power supply system. To prevent this, always install an optional stand-alone AC reactor (FR-HAL).) A DC reactor (FR-HEL) can not be connected to the inverter.
- Electromagnetic wave interference

The input/output (main circuit) of the inverter includes high frequency components, which may interfere with the communication devices (such as AM radios) used near the inverter. In this case, connecting a capacitor type filter will reduce electromagnetic wave interference.
Refer to the instruction manual of each option and peripheral devices for details of peripheral devices.

1.2.1 Peripheral devices

Check the inverter model of the inverter you purchased. Appropriate peripheral devices must be selected according to the capacity. Refer to the following list and prepare appropriate peripheral devices:

200V class

Motor Output $(\mathbf{k W})^{*}$	Applicable Inverter Model	Breaker Selection*2	Input Side Magnetic Contactor*3
5.5	FR-A721-5.5K	40 A	S-N20, N21
7.5	FR-A721-7.5K	50 A	S-N25
11	FR-A721-11K	75 A	S-N35
15	FR-A721-15K	100 A	S-N50
18.5	FR-A721-18.5K	125 A	S-N50
22	FR-A721-22K	150 A	S-N65
30	FR-A721-30K	175 A	S-N80
37	FR-A721-37K	225 A	S-N125
45	FR-A721-45K	300 A	S-N150
55	FR-A721-55K	350 A	S-N180

400 V class

Motor Output $(\mathbf{k W})^{* 1}$	Applicable Inverter Model	Breaker Selection*2	Input Side Magnetic Contactor*3
5.5	FR-A741-5.5K	20A	S-N11, N12
7.5	FR-A741-7.5K	30 A	S-N20, N21
11	FR-A741-11K	40 A	S-N20, N21
15	FR-A741-15K	50 A	S-N20, N21
18.5	FR-A741-18.5K	60 A	S-N25
22	FR-A741-22K	75 A	S-N25
30	FR-A741-30K	100 A	S-N50
37	FR-A741-37K	125 A	S-N50
45	FR-A741-45K	150 A	S-N65
55	FR-A741-55K	175 A	S-N80

*1 Selections for use of the Mitsubishi 4-pole standard motor with power supply voltage of 200VAC/400VAC 50 Hz .
*2 Select the MCCB according to the inverter power supply capacity. Install one MCCB per inverter.
For the use in the United States or Canada, provide the appropriate UL and cUL listed Class RK5 or Class T type fuse or UL 489 molded case circuit breaker (MCCB) that is suitable for branch circuit protection.
 (Refer to page 199.)
*3 Magnetic contactor is selected based on the AC-1 class. The electrical durability of magnetic contactor is 500,000 times. When the magnetic contactor is used for emergency stop during motor driving, the electrical durability is 25 times.
When using the MC for emergency stop during motor driving or using on the motor side during commercial-power supply operation, select the MC with class AC-3 rated current for the motor rated current.

CAUTION

[^1]
Method of removal and reinstallation of

1.3 Method of removal and reinstallation of the front cover

-Removal of the operation panel

1) Loosen the two screws on the operation panel.
(These screws cannot be removed.)

2) Push the left and right hooks of the operation panel and pull the operation panel toward you to remove.

When reinstalling the operation panel, insert it straight to reinstall securely and tighten the fixed screws of the operation panel.

-Removal of the front cover

1) Remove installation screws on the front cover 1 to remove the front cover 1.

2) Loosen the installation screws of the front cover 2.

3) Pull the front cover 2 toward you to remove by pushing an installation hook on the right side using left fixed hooks as supports.

-Reinstallation of the front cover

1) Insert the two fixed hooks on the left side of the front cover 2 into the sockets of the inverter.
2) Using the fixed hooks as supports, securely press the front cover 2 against the inverter.
(Although installation can be done with the operation panel mounted, make sure that a connector is securely fixed.)

3) Fix the front cover 2 with the installation screws.

4) Fix the front cover 1 with the installation screws.

REMARKS

For the 55 K , the front cover 1 is separated into two parts.

= CAUTION

1. Fully make sure that the front cover has been reinstalled securely. Always tighten the installation screws of the front cover.
2. The same serial number is printed on the capacity plate of the front cover and the rating plate of the inverter. Before reinstalling the front cover, check the serial numbers to ensure that the cover removed is reinstalled to the inverter from where it was removed.

1.4 Installation of the inverter and enclosure design

When an inverter enclosure is to be designed and manufactured, heat generated by contained equipment, etc., the environment of an operating place, and others must be fully considered to determine the enclosure structure, size and equipment layout. The inverter unit uses many semiconductor devices. To ensure higher reliability and long period of operation, operate the inverter in the ambient environment that completely satisfies the equipment specifications.

1.4.1 Inverter installation environment

The inverter consists of precision mechanical and electronic parts. Never install or handle it in any of the following conditions as doing so could cause an operation fault or failure.
Vertical mounting
(When installing two or
more inverters, install
them in parallel.)

As the inverter installation environment should satisfy the standard specifications indicated in the following table, operation in any place that does not meet these conditions not only deteriorates the performance and life of the inverter, but also causes a failure. Refer to the following points and take adequate measures.

Environmental standard specifications of inverter

Item	Description
Surrounding air temperature	$-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ (non-freezing)
Ambient humidity	$90 \% \mathrm{RH}$ maximum (non-condensing)
Atmosphere	Free from corrosive and explosive gases, dust and dirt
Maximum Altitude	$1,000 \mathrm{~m}$ or less
Vibration	$5.9 \mathrm{~m} / \mathrm{s}^{2}$ or less at 10 to 55 Hz (directions of $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ axes)

(1) Temperature

The permissible surrounding air temperature of the inverter is between $-10^{\circ} \mathrm{C}$ and $+50^{\circ} \mathrm{C}$. Always operate the inverter within this temperature range. Operation outside this range will considerably shorten the service lives of the semiconductors, parts, capacitors and others. Take the following measures so that the surrounding air temperature of the inverter falls within the specified range.

1) Measures against high temperature

- Use a forced ventilation system or similar cooling system. (Refer to page 9.)
- Install the enclosure in an air-conditioned electrical chamber.
- Block direct sunlight.
- Provide a shield or similar plate to avoid direct exposure to the radiated heat and wind of a heat source.
- Ventilate the area around the enclosure well.

2) Measures against low temperature

- Provide a space heater in the enclosure.
- Do not power off the inverter. (Keep the start signal of the inverter off.)

3) Sudden temperature changes

- Select an installation place where temperature does not change suddenly.
- Avoid installing the inverter near the air outlet of an air conditioner.
- If temperature changes are caused by opening/closing of a door, install the inverter away from the door.

(2) Humidity

Normally operate the inverter within the 45 to 90% range of the ambient humidity. Too high humidity will pose problems of reduced insulation and metal corrosion. On the other hand, too low humidity may produce a spatial electrical breakdown. The insulation distance specified in JEM1103 "Control Equipment Insulator" is defined as humidity 45 to 85\%.

1) Measures against high humidity

- Make the enclosure enclosed, and provide it with a hygroscopic agent.
- Take dry air into the enclosure from outside.
- Provide a space heater in the enclosure.

2) Measures against low humidity

What is important in fitting or inspection of the unit in this status is to discharge your body (static electricity) beforehand and keep your body from contact with the parts and patterns, besides blowing air of proper humidity into the enclosure from outside.
3) Measures against condensation

Condensation may occur if frequent operation stops change the in-enclosure temperature suddenly or if the outsideair temperature changes suddenly.
Condensation causes such faults as reduced insulation and corrosion.

- Take the measures against high humidity in 1).
- Do not power off the inverter. (Keep the start signal of the inverter off.)

(3) Dust, dirt, oil mist

Dust and dirt will cause such faults as poor contact of contact points, reduced insulation or reduced cooling effect due to moisture absorption of accumulated dust and dirt, and in-enclosure temperature rise due to clogged filter.
In the atmosphere where conductive powder floats, dust and dirt will cause such faults as malfunction, deteriorated insulation and short circuit in a short time.
Since oil mist will cause similar conditions, it is necessary to take adequate measures.

Countermeasures

- Place in a totally enclosed enclosure.

Take measures if the in-enclosure temperature rises. (Refer to page 9.)

- Purge air.

Pump clean air from outside to make the in-enclosure pressure higher than the outside-air pressure.

(4) Corrosive gas, salt damage

If the inverter is exposed to corrosive gas or to salt near a beach, the printed board patterns and parts will corrode or the relays and switches will result in poor contact.
In such places, take the measures given in Section (3).

(5) Explosive, flammable gases

As the inverter is non-explosion proof, it must be contained in an explosion proof enclosure.
In places where explosion may be caused by explosive gas, dust or dirt, an enclosure cannot be used unless it structurally complies with the guidelines and has passed the specified tests. This makes the enclosure itself expensive (including the test charges).
The best way is to avoid installation in such places and install the inverter in a non-hazardous place.

(6) Highland

Use the inverter at the altitude of within 1000 m .
If it is used at a higher place, it is likely that thin air will reduce the cooling effect and low air pressure will deteriorate dielectric strength.

(7) Vibration, impact

The vibration resistance of the inverter is up to $5.9 \mathrm{~m} / \mathrm{s}^{2}$ at 10 to 55 Hz frequency (directions of $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ axes) and 1 mm amplitude.
Vibration or impact, if less than the specified value, applied for a long time may make the mechanism loose or cause poor contact to the connectors.
Especially when impact is imposed repeatedly, caution must be taken as the part pins are likely to break.

Countermeasures

- Provide the enclosure with rubber vibration isolators.
- Strengthen the structure to prevent the enclosure from resonance.
- Install the enclosure away from sources of vibration.

1.4.2 Cooling system types for inverter enclosure

From the enclosure that contains the inverter, the heat of the inverter and other equipment (transformers, lamps, resistors, etc.) and the incoming heat such as direct sunlight must be dissipated to keep the in-enclosure temperature lower than the permissible temperatures of the in-enclosure equipment including the inverter.
The cooling systems are classified as follows in terms of the cooling calculation method.

1) Cooling by natural heat dissipation from the enclosure surface (Totally enclosed type)
2) Cooling by heat sink (Aluminum heatsink, etc.)
3) Cooling by ventilation (Forced ventilation type, pipe ventilation type)
4) Cooling by heat exchanger or cooler (Heat pipe, cooler, etc.)

Cooling System		Enclosure Structure	Comment
Natural cooling	Natural ventilation (Enclosed, open type)		Low in cost and generally used, but the enclosure size increases as the inverter capacity increases. For relatively small capacities.
	Natural ventilation (Totally enclosed type)		Being a totally enclosed type, the most appropriate for hostile environment having dust, dirt, oil mist, etc. The enclosure size increases depending on the inverter capacity.
Forced cooling	Heatsink cooling	$\text { Heatsink } \sqrt[4]{\sqrt{8} \begin{array}{l} 8 \square q \\ \sqrt{I N V} \\ \hline \end{array}}$	Having restrictions on the heatsink mounting position and area, and designed for relative small capacities.
	Forced ventilation		For general indoor installation. Appropriate for enclosure downsizing and cost reduction, and often used.
	Heat pipe		Totally enclosed type for enclosure downsizing.

1.4.3 Inverter placement

(1) Installation of the Inverter

Installation on the enclosure

CAUTION

. When encasing multiple inverters, install them in parallel as a cooling measure.

- Install the inverter vertically.

(2) Clearances around the inverter

To ensure ease of heat dissipation and maintenance, leave at least the shown clearances around the inverter. At least the following clearances are required under the inverter as a wiring space, and above the inverter as a heat dissipation space.

Leave enough clearances and take cooling measures.

REMARKS

For replacing the cooling fan, 30 cm of space is necessary in front of the inverter. Refer to page 175 for fan replacement.

(3) Inverter mounting orientation

Mount the inverter on a wall as specified. Do not mount it horizontally or any other way.

(4) Above the inverter

Heat is blown up from inside the inverter by the small fan built in the unit. Any equipment placed above the inverter should be heat resistant.

(5) Arrangement of multiple inverters

When multiple inverters are placed in the same enclosure, generally arrange them horizontally as shown in the figure below (a). When it is inevitable to arrange them vertically to minimize space, take such measures as to provide guides since heat from the bottom inverters can increase the temperatures in the top inverters, causing inverter failures.

When mounting multiple inverters, fully take caution not to make the surrounding air temperature of the inverter higher than the permissible value by providing ventilation and increasing the enclosure size.

Arrangement of multiple inverters

(6) Placement of ventilation fan and inverter

Heat generated in the inverter is blown up from the bottom of the unit as warm air by the cooling fan. When installing a ventilation fan for that heat, determine the place of ventilation fan installation after fully considering an air flow. (Air passes through areas of low resistance. Make an airway and airflow plates to expose the inverter to cool air.)

Placement of ventilation fan and inverter

2 WIRING

2.1 Terminal connection diagram

CAUTION

To prevent a malfunction due to noise, keep the signal cables more than 10 cm away from the power cables. Also separate the main circuit wire of the input side and the output side.
After wiring, wire offcuts must not be left in the inverter.
Wire offcuts can cause an alarm, failure or malfunction. Always keep the inverter clean.
When drilling mounting holes in an enclosure etc., take care not to allow chips and other foreign matter to enter the inverter
Set the voltage/current input switch correctly. Different setting may cause a fault, failure or malfunction.

2.2 Main circuit terminal specifications

2.2.1 Specification of main circuit terminal

Terminal Symbol	Terminal Name	Description
R/L1, S/L2, T/L3	AC power input	Connect to the commercial power supply.
U, V, W	Inverter output	Connect a three-phase squirrel-cage motor.
R1/L11, S1/L21	Power supply for control circuit	Connected to the AC power supply terminals R/L1 and S/L2. To retain the fault display and fault output, remove the jumpers from terminals R/L1-R1/ L11 and S/L2-S1/L21 and apply external power to these terminals. Do not turn off the power supply for control circuit (R1/L11, S1/L21) with the main circuit power (R/L1, S/L2, T/L3) on. Doing so may damage the inverter. The circuit should be configured so that the main circuit power ($R /$ $\mathrm{L} 1, \mathrm{~S} / \mathrm{L} 2, \mathrm{~T} / \mathrm{L} 3$) is also turned off when the power supply for control circuit ($\mathrm{R} 1 / \mathrm{L} 11, \mathrm{~S} 1 / \mathrm{L} 21$) is off. The following power supply capacities are required to supply power separately from R1/L11 and S1/L21: 90VA for 15 K or lower, 100 VA for 18.5 K or higher
P/+, N/-	DC terminal	Do not connect any options.
$\stackrel{1}{\square}$	Earth (Ground)	For earthing (grounding) the inverter chassis. Must be earthed (grounded).

2.2.2 Terminal arrangement of the main circuit terminal, power supply and the motor wiring
 200V class

FR-A721-18.5K to 45K	

FR-A741-5.5K, 7.5K Screw size (M4)	
FR-A741-18.5K to 45K	

CAUTION

- The power supply cables must be connected to R/L1, S/L2, T/L3. (Phase sequence needs not to be matched.) Never connect the power cable to the $\mathrm{U}, \mathrm{V}, \mathrm{W}$ of the inverter. Doing so will damage the inverter.
Connect the motor to $\mathrm{U}, \mathrm{V}, \mathrm{W}$. At this time, turning ON the forward rotation switch (signal) rotates the motor in the counterclockwise direction when viewed from the motor shaft.

2.2.3 Cables and wiring length

(1) Applicable cable size

Select the recommended cable size to ensure that a voltage drop will be 2% or less.
If the wiring distance is long between the inverter and motor, a main circuit cable voltage drop will cause the motor torque to decrease especially at the output of a low frequency.
The following table indicates a selection example for the wiring length of 20 m .
200 V class (when input power supply is 220 V)

Applicable Inverter Model	Terminal Screw Size *4	Tightening Torque $\mathrm{N} \cdot \mathrm{m}$	Crimping Terminal		Cable Sizes							
					HIV, etc. ($\mathrm{mm}^{\mathbf{2}}$) *1			AWG/MCM *2		PVC, etc. (mm^{2}) *3		
			R/L1, S/L2, T/L3	U, V, W	R/L1, S/L2, T/L3	U, V, W	Earthing cable	R/L1, S/L2, T/L3	U, V, W	R/L1, S/L2, T/L3	U, V, W	Earthing cable
FR-A721-5.5K	M5	2.5	5.5-5	5.5-5	5.5	5.5	5.5	10	10	6	6	6
FR-A721-7.5K	M5	2.5	14-5	8-5	14	8	5.5	6	8	16	10	16
FR-A721-11K	M5	2.5	14-5	14-5	14	14	14	6	6	16	16	16
FR-A721-15K	M6	4.4	22-6	22-6	22	22	14	4	4	25	25	16
FR-A721-18.5K	M8(M6)	7.8	38-8	38-8	38	38	22	2	2	35	35	25
FR-A721-22K	M8(M6)	7.8	38-8	38-8	38	38	22	2	2	35	35	25
FR-A721-30K	M8(M6)	7.8	60-8	60-8	60	60	22	1/0	1/0	50	50	25
FR-A721-37K	M10(M8)	14.7	80-10	80-10	80	80	22	3/0	3/0	70	70	35
FR-A721-45K	M10(M8)	14.7	100-10	100-10	100	100	38	4/0	4/0	95	95	50
FR-A721-55K	M12(M8)	24.5	100-12	100-12	100	100	38	4/0	4/0	95	95	50

*1 The cable size is that of the cable (HIV cable (600 V class 2 vinyl-insulated cable) etc.) with continuous maximum permissible temperature of $75^{\circ} \mathrm{C}$. Assumes that the surrounding air temperature is $50^{\circ} \mathrm{C}$ or less and the wiring distance is 20 m or less.
*2 The recommended cable size is that of the cable (THHW cable) with continuous maximum permissible temperature of $75^{\circ} \mathrm{C}$. Assumes that the surrounding air temperature is $40^{\circ} \mathrm{C}$ or less and the wiring distance is 20 m or less.
(Selection example for use mainly in the United States.)
*3 For the 15 K or lower, the recommended cable size is that of the cable (PVC cable) with continuous maximum permissible temperature of $70^{\circ} \mathrm{C}$. Assumes that the surrounding air temperature is $40^{\circ} \mathrm{C}$ or less and the wiring distance is 20 m or less.
For the 18.5 K or higher, the recommended cable size is that of the cable (XLPE cable) with continuous maximum permissible temperature of $90^{\circ} \mathrm{C}$. Assumes that the surrounding air temperature is $40^{\circ} \mathrm{C}$ or less and wiring is performed in an enclosure. (Selection example for use mainly in Europe.)
*4 The terminal screw size indicates the terminal size for R/L1, S/L2, T/L3, U, V, W, and a screw for earthing (grounding). A screw for earthing (grounding) of the 18.5 K or higher is indicated in ().

400 V class (when input power supply is 440 V)

Applicable Inverter Model	Terminal Screw Size *4	Tightening Torque N•m	Crimping Terminal		Cable Sizes							
					HIV, etc. (mm^{2}) *1			AWG/MCM *2		PVC, etc. (mm^{2}) *3		
			R/L1, S/L2, T/L3	U, V, W	R/L1, S/L2, T/L3	U, V, W	Earthing Cable	R/L1, S/L2, T/L3	U, V, W	R/L1, S/L2, T/L3	U, V, W	Earthing Cable
FR-A741-5.5K	M4	1.5	2-4	2-4	2	2	3.5	12	14	2.5	2.5	4
FR-A741-7.5K	M4	1.5	5.5-4	5.5-4	3.5	3.5	3.5	12	12	4	4	4
FR-A741-11K	M5	2.5	5.5-5	5.5-5	5.5	5.5	8	10	10	6	6	10
FR-A741-15K	M5	2.5	8-5	8-5	8	8	8	8	8	10	10	10
FR-A741-18.5K	M6	4.4	14-6	8-6	14	8	14	6	8	16	10	16
FR-A741-22K	M6	4.4	14-6	14-6	14	14	14	6	6	16	16	16
FR-A741-30K	M6	4.4	22-6	22-6	22	22	14	4	4	25	25	16
FR-A741-37K	M8	7.8	22-8	22-8	22	22	14	4	4	25	25	16
FR-A741-45K	M8	7.8	38-8	38-8	38	38	22	1	2	50	50	25
FR-A741-55K	M8	7.8	60-8	60-8	60	60	22	1/0	1/0	50	50	25

*1 The cable size is that of the cable (HIV cable (600 V class 2 vinyl-insulated cable) etc.) with continuous maximum permissible temperature of $75^{\circ} \mathrm{C}$. Assumes that the surrounding air temperature is $50^{\circ} \mathrm{C}$ or less and the wiring distance is 20 m or less.
*2 For the 45 K or lower, the recommended cable size is that of the cable (THHW cable) with continuous maximum permissible temperature of $75^{\circ} \mathrm{C}$. Assumes that the surrounding air temperature is $40^{\circ} \mathrm{C}$ or less and the wiring distance is 20 m or less.
For the 55 K , the recommended cable size is that of the cable (THHN cable) with continuous maximum permissible temperature of $90^{\circ} \mathrm{C}$. Assumes that the surrounding air temperature is $40^{\circ} \mathrm{C}$ or less and wiring is performed in an enclosure. (Selection example for use mainly in the United States.)
*3 For the 45 K or lower, the recommended cable size is that of the cable (PVC cable) with continuous maximum permissible temperature of $70^{\circ} \mathrm{C}$. Assumes that the ambient temperature is $40^{\circ} \mathrm{C}$ or less and the wiring distance is 20 m or less.
For the 55 K , the recommended cable size is that of the cable (XLPE cable) with continuous maximum permissible temperature of $90^{\circ} \mathrm{C}$. Assumes that the ambient temperature is $40^{\circ} \mathrm{C}$ or less and wiring is performed in an enclosure.
(Selection example for use mainly in Europe.)

The line voltage drop can be calculated by the following formula:
Line voltage drop $[\mathrm{V}]=\frac{\sqrt{3} \times \text { wire resistance }[\mathrm{m} \Omega / \mathrm{m}] \times \text { wiring distance }[\mathrm{m}] \times \text { current }[\mathrm{A}]}{1000}$
Use a larger diameter cable when the wiring distance is long or when it is desired to decrease the voltage drop (torque reduction) in the low speed range.

CAUTION

- Tighten the terminal screw to the specified torque.

A screw that has been tighten too loosely can cause a short circuit or malfunction.
A screw that has been tighten too tightly can cause a short circuit or malfunction due to the unit breakage.
Use crimping terminals with insulation sleeve to wire the power supply and motor.

(2) Notes on earthing (grounding)

- Always earth (ground) the motor and inverter.
1)Purpose of earthing (grounding)

Generally, an electrical apparatus has an earth (ground) terminal, which must be connected to the ground before use.
An electrical circuit is usually insulated by an insulating material and encased. However, it is impossible to manufacture an insulating material that can shut off a leakage current completely, and actually, a slight current flow into the case. The purpose of earthing (grounding) the case of an electrical apparatus is to prevent operator from getting an electric shock from this leakage current when touching it.
To avoid the influence of external noises, this earthing (grounding) is important to audio equipment, sensors, computers and other apparatuses that handle low-level signals or operate very fast.
2)Earthing (grounding) methods and earthing (grounding) work

As described previously, earthing (grounding) is roughly classified into an electrical shock prevention type and a noise-affected malfunction prevention type. Therefore, these two types should be discriminated clearly, and the following work must be done to prevent the leakage current having the inverter's high frequency components from entering the malfunction prevention type earthing (grounding):
(a) If possible, use (I) independent earthing (grounding) in figure below for the inverter. If independent earthing (grounding) is not available, use (II) joint earthing (grounding) in the figure below which the inverter is connected with the other equipment at an earthing (grounding) point. The (III) common earthing (grounding) as in the figure below, which inverter shares a common earth (ground) cable with the other equipment, must be avoided.
A leakage current including many high frequency components flows in the earth (ground) cables of the inverter and inverter-driven motor. Therefore, use the independent earthing (grounding) and separated the earthing (grounding) cable of the inverter from equipments sensitive to EMI.
In a high building, it may be effective to use the EMI prevention type earthing (grounding) connecting to an iron structure frame, and electric shock prevention type earthing (grounding) with the independent earthing (grounding) together.
(b) This inverter must be earthed (grounded). Earthing (Grounding) must conform to the requirements of national and local safety regulations and electrical codes. (NEC section 250, IEC 536 class 1 and other applicable standards).
Use a neutral-point earthed (grounded) power supply for 400 V class inverter in compliance with EN standard.
(c) Use the thickest possible earth (ground) cable. The earth (ground) cable should be of not less than the size indicated in the table on the previous page.
(d) The grounding point should be as near as possible to the inverter, and the ground wire length should be as short as possible.
(e) Run the earth (ground) cable as far away as possible from the I/O wiring of equipment sensitive to noises and run them in parallel in the minimum distance.

(I) Independent earthing (grounding).......Best

(III) Joint earthing (grounding).......Not allowed

(3) Total wiring length

The overall wiring length for the connection to a single motor or multiple motors should be within 500 m (with unshielded wires).
(The wiring length should be within 100 m for the operation under vector control or when using shielded wires.)

When driving a 400 V class motor by the inverter, surge voltages attributable to the wiring constants may occur at the motor terminals, deteriorating the insulation of the motor.
Refer to page 42 for measures against deteriorated insulation.

CAUTION

- Especially with the long-distance wiring and the wiring with shielded wires, the inverter may be affected by a charging current caused by the stray capacitance from the wiring, leading to a malfunction of the overcurrent protective function or the fast response current limit function, or an inverter fault. It may also lead to a malfunction or fault of the equipment connected on the inverter output side. Stray capacitance from the wiring varies with its wiring conditions. The overall wiring length specified above is only a reference value. If the fast-response current limit function malfunctions, disable this function. (For Pr. 156 Stall prevention operation selection, refer to Chapter 4 of the Instruction Manual (Applied).)
- For explanation of the surge voltage suppression filter (FR-ASF-H/FR-BMF-H) and sine wave filter (MT-BSL/BSC), refer to the manual of each option.
Do not connect a surge voltage suppression filter (FR-ASF-H/FR-BMF-H) during the operation under vector control.

(4) Cable size of the control circuit power supply (terminal R1/L11, S1/L21)

- Terminal screw size: M4
- Cable size: $0.75 \mathrm{~mm}^{2}$ to $2 \mathrm{~mm}^{2}$
- Tightening torque: $1.5 \mathrm{~N} \cdot \mathrm{~m}$

2.2.4 When connecting the control circuit and the main circuit separately to the power supply

<Connection diagram>

1) Remove the upper screws.
2) Remove the lower screws.
3)Pull the jumper toward you to remove.
3) Connect the separate power supply cable for the control circuit to the upper terminals (R1/L11, S1/L21).

When fault occurs, opening of the electromagnetic contactor (MC) on the inverter power supply side results in power loss in the control circuit, disabling the fault output signal retention. Terminals R1/L11 and S1/L21 are provided to hold a fault signal. In this case, connect the power supply terminals R1/L11 and S1/L21 of the control circuit to the input side of the MC. Do not connect the power cable to incorrect terminals. Doing so may damage the inverter.

CAUTION

[^2]
2.3 Control circuit specifications

2.3.1 Control circuit terminals

indicates that terminal functions can be selected using Pr. 178 to Pr. 196 (I/O terminal function selection) (Refer to Chapter 4 of the Instruction Manual (Applied).)
(1) Input signals

¢	Terminal Symbol	Terminal Name	Description	Rated Specifications	Referto page
	10E	Frequency setting power supply	When connecting the frequency setting potentiometer at an initial status, connect it to terminal 10. Change the input specifications of terminal 2 when connecting it to terminal 10E. (Refer to Pr. 73 Analog input selection in Chapter 4 of the Instruction Manual (Applied).)	$\begin{gathered} \text { 10VDC } \\ \text { Permissible load } \\ \text { current } 10 \mathrm{~mA} \end{gathered}$	*2
	10			5VDC Permissible load current 10 mA	88, 96
	2	Frequency setting (voltage)	Inputting 0 to 5 VDC (or 0 to $10 \mathrm{~V}, 0$ to 20 mA) provides the maximum output frequency at $5 \mathrm{~V}(10 \mathrm{~V}, 20 \mathrm{~mA})$ and makes input and output proportional. Use Pr. 73 to switch from among input 0 to 5 VDC (initial setting), 0 to 10 VDC , and 0 to 20 mA . Set the voltage/current input switch in the ON position to select current input (0 to 20 mA). * 1	Voltage input: Input resistance $10 \mathrm{k} \Omega \pm 1 \mathrm{k} \Omega$ Maximum permissible voltage 20VDC	88, 96
	4	Frequency setting (current)	Inputting 4 to 20 mADC (or 0 to $5 \mathrm{~V}, 0$ to 10 V) provides the maximum output frequency at 20 mA makes input and output proportional. This input signal is valid only when the AU signal is ON (terminal 2 input is invalid). Use Pr. 267 to switch from among input 4 to 20 mA (initial setting), 0 to 5 VDC , and 0 to 10VDC. Set the voltage/current input switch in the OFF position to select voltage input (0 to $5 \mathrm{~V} / 0$ to 10 V). *1 (Refer to Chapter 4 of the Instruction Manual (Applied).) Use Pr. 858 to switch terminal functions.	Current input: Input resistance $245 \Omega \pm 5 \Omega$ Maximum permissible current 30 mA	90, 98
	1	Frequency setting auxiliary	Inputting 0 to ± 5 VDC or 0 to $\pm 10 \mathrm{VDC}$ adds this signal to terminal 2 or 4 frequency setting signal. Use $P r .73$ to switch between the input 0 to $\pm 5 \mathrm{VDC}$ and 0 to $\pm 10 \mathrm{VDC}$ (initial setting). Use Pr. 868 to switch terminal functions.	Input resistance $10 \mathrm{k} \Omega \pm 1 \mathrm{k} \Omega$ Maximum permissible voltage $\pm 20 \mathrm{VDC}$	*2
	5	Frequency setting common	Common terminal for frequency setting signal (terminal 2,1 or 4) and analog output terminal AM. Do not earth (ground).		-

*1 Set Pr. 73, Pr. 267, and a voltage/current input switch correctly, then input an analog signal in accordance with the setting.
Applying a voltage signal with voltage/current input switch ON (current input is selected) or a current signal with switch OFF (voltage input is selected) could cause component damage of the inverter or analog circuit of signal output devices.
*2 Refer to Chapter 4 of the Instruction Manual (Applied).
(2) Output signals

$\begin{array}{\|l} \hline \stackrel{\circ}{2} \\ \gtrless \end{array}$	Terminal Symbol	Terminal Name	Description	Rated Specifications	Referto page
	A1, B1, C1	Relay output 1 (alarm output)	1 changeover contact output indicates that the inverter protective function has activated and the output stopped. Fault: No conduction between B and C (conduction between A and C) Normal: Conduction between B and C (No conduction between A and C)	Contact capacity: 230VAC 0.3A (Power factor=0.4) 30VDC 0.3A	*2
	$\begin{array}{\|l\|} \hline \mathrm{A} 2, \\ \mathrm{~B} 2, \\ \mathrm{C} 2 \\ \hline \end{array}$	Relay output 2	1 changeover contact output		*2

$\mid \stackrel{2}{2}$	Terminal Symbol	Terminal Name	Description		Rated Specifications	Referto page
	RUN	Inverter running	Switched low when the inverter output frequency is equal to or higher than the starting frequency (initial value 0.5 Hz). Switched high during stop or DC injection brake operation. *1		Permissible load 24VDC (27VDC maximum) 0.1A (A voltage drop is 2.8 V maximum when the signal is on.) *1 Low is when the	*2
	SU	Up to frequency	Switched low when the output frequency reaches within the range of $\pm 10 \%$ (initial value) of the set frequency. Switched high during acceleration/ deceleration and at a stop. *1	Alarm code (4bit) output		*2
	OL	Overload warning	Switched low when stall prevention is activated by the stall prevention function. Switched high when stall prevention is cancelled. *1			*2
	IPF	Instantaneous power failure	Switched low when an instantaneous power failure and under voltage protections are activated. *1		output transistor is ON (conducts). High is when the transistor is OFF	*2
	FU	Frequency detection	Switched low when the inverter output frequency is equal to or higher than the preset detected frequency and high when less than the preset detected frequency. *1		(does not conduct).	*2
	SE	Open collector output common	Common terminal for terminals RUN, SU, OL, IPF, FU		-	-
	FM	For meter	Select one e.g. output frequency from monitor items. Not output during inverter reset. The output signal is proportional to the magnitude of the corresponding monitoring item. To set a full-scale value for monitoring the output frequency and the output current, set Pr. 56 and Pr. 158. *2	Output item: Output frequency (initial setting)	Permissible load current 2 mA 1440pulses/s at 60 Hz	*2
		NPN open collector output		Signals can be output from the open collector terminals by setting Pr. 291.	Maximum output pulse: 50kpulses/s Permissible load current : 80 mA	*2
年	AM	Analog signal output		Output item: Output frequency (initial setting)	Output signal 0 to 10VDC Permissible load current 1 mA (load impedance $10 \mathrm{k} \Omega$ or more) Resolution 8 bit	*2

*2 Refer to Chapter 4 of the Instruction Manual (Applied).

(3) Communication

2.3.2 Changing the control logic

The input signals are set to sink logic (SINK) when shipped from the factory.
To change the control logic, the jumper connector on the back of the control circuit terminal block must be moved to the other position.
(The output signals may be used in either the sink or source logic independently of the jumper connector position.)

1) Loosen the two installation screws in both ends of the control circuit terminal block. (These screws cannot be removed.)
Pull down the terminal block from behind the control circuit terminals.

2) Change the jumper connector set to the sink logic (SINK) on the rear panel of the control circuit terminal block to source logic (SOURCE).

CAUTION

1. Make sure that the control circuit connector is fitted correctly.
2. While power is ON , never disconnect the control circuit terminal block.
4) Sink logic and source logic

- In sink logic, a signal switches ON when a current flows from the corresponding signal input terminal.

Terminal SD is common to the contact input signals. Terminal SE is common to the open collector output signals.
In source logic, a signal switches ON when a current flows into the corresponding signal input terminal.
Terminal PC is common to the contact input signals. Terminal SE is common to the open collector output signals.

- Current flow concerning the input/output signal when sink logic is selected

- When using an external power supply for transistor output

. Sink logic type

Use terminal PC as a common terminal, and perform wiring as shown below. (Do not connect terminal SD of the inverter with terminal $O V$ of the external power supply. When using terminals PC and SD as a 24VDC power supply, do not install a power supply in parallel in the outside of the inverter. Doing so may cause a malfunction due to undesirable currents.)

$\rightarrow-$ - Current flow

- Current flow concerning the input/output signal
when source logic is selected

Source logic type
Use terminal SD as a common terminal, and perform wiring as shown below. (Do not connect terminal PC of the inverter with terminal +24 V of the external power supply. When using terminals PC and SD as a 24VDC power supply, do not install an external power supply in parallel with the inverter. Doing so may cause a malfunction in the inverter due to undesirable currents.)

$--\cdots$ - Current flow

2.3.3 Control circuit terminal layout

Terminal screw size: M3.5
Tightening torque: $1.2 \mathrm{~N} \cdot \mathrm{~m}$

(1) Common terminals of the control circuit (SD, $5, \mathrm{SE}$)

Terminals SD, 5 , and SE are all common terminals (0 V) for I/O signals and are isolated from each other. Do not earth (ground) these terminals.
Avoid connecting the terminal SD and 5 and the terminal SE and 5.
Terminal SD is a common terminal for the contact input terminals (STF, STR, STOP, RH, RM, RL, JOG, RT, MRS, RES, AU, CS) and frequency output signal (FM).
The open collector circuit is isolated from the internal control circuit by photocoupler.
Terminal 5 is a common terminal for frequency setting signal (terminal 2, 1 or 4) and analog output terminal AM.
It should be protected from external noise using a shielded or twisted cable.
Terminal SE is a common terminal for the open collector output terminal (RUN, SU, OL, IPF, FU).
The contact input circuit is isolated from the internal control circuit by photocoupler.

(2) Signal inputs by contactless switches

The contacted input terminals of the inverter (STF, STR, STOP, RH, RM, RL, JOG, RT, MRS, RES, AU, CS) can be controlled using a transistor instead of a contacted switch as shown on the right.

External signal input using transistor

2.3.4 Wiring instructions

1) It is recommended to use the cables of $0.75 \mathrm{~mm}^{2}$ gauge for connection to the control circuit terminals. If the cable gauge used is $1.25 \mathrm{~mm}^{2}$ or more, the front cover may be lifted when there are many cables running or the cables are run improperly, resulting in an operation panel contact fault.
2) The wiring length should be $30 \mathrm{~m}(200 \mathrm{~m}$ for terminal $F M$) maximum.
3) Use two or more parallel micro-signal contacts or twin contacts to prevent a contact faults when using contact inputs since the control circuit input signals are micro-currents.

Micro signal contacts

Twin contacts
4) Use shielded or twisted cables for connection to the control circuit terminals and run them away from the main and power circuits (including the 200V relay sequence circuit).
5) Do not apply a voltage to the contact input terminals (e.g. STF) of the control circuit.
6) Always apply a voltage to the fault output terminals (A, B, C) via a relay coil, lamp, etc.

2.3.5 When connecting the operation panel using a connection cable

Having an operation panel on the enclosure surface is convenient. With a connection cable, you can mount the operation panel (FR-DU07) to the enclosure surface, and connect it to the inverter.

CAUTION

Do not connect the PU connector to the computer's LAN port, FAX modem socket or telephone connector. The inverter and machine could be damaged due to differences in electrical specifications.

REMARKS

Refer to page 4 for removal method of the operation panel.
Overall wiring length when the operation panel is connected: 20 m maximum
Refer to the following when fabricating the cable on the user side.
Commercially available product examples (as of January 2010)

	Product	Type	Manufacturer
1$)$	Communication cable	$\begin{array}{c}\text { SGLPEV-T (Cat5e/300m) } \\ 24 A W G ~\end{array} 4 \mathrm{P}$	

The inverter can be connected to the computer and FR-PU04/FR-PU07.

2.3.6 RS-485 terminal block

. Conforming standard: EIA-485(RS-485)

- Transmission format: Multidrop link
- Communication speed: MAX 38400bps
- Overall length: 500 m
- Connection cable:Twisted pair cable
(4 pairs)

Set only the terminating resistor switch of the remotest inverter to the " 100Ω " position.

2.3.7 Communication operation

Using the PU connector or RS-485 terminal, you can perform communication operation from a personal computer etc. When the PU connector is connected with a personal, FA or other computer by a communication cable, a user program can run and monitor the inverter or read and write to parameters. For the Mitsubishi inverter protocol (computer link operation), communication can be performed with the PU connector and RS-485 terminal.
For the Modbus-RTU protocol, communication can be performed with the RS-485 terminal.
For further details, refer to Chapter 4 of the Instruction Manual (Applied).

2.3.8 USB connector

A personal computer and an inverter can be connected with a USB (Ver1. 1) cable. You can perform parameter setting and monitoring with the FR Configurator.
-USB communication specifications

Interface	Conforms to USB1.1
Transmission speed	12 Mbps
Wiring length	Maximum 5m
Connector	USB B connector (B receptacle)
Power supply	Self-power supply

Removal of cover
Place a flat-blade screwdriver, etc. in a slot and push up the cover to open.

2.4 Connection of motor with encoder (vector control)

Orientation control and encoder feedback control, and speed control, torque control and position control by full-scale vector control operation can be performed using a motor with encoder and a plug-in option FR-A7AP.
(1) Structure of the FR-A7AP

(2) Terminals of the FR-A7AP

Terminal	Terminal Name	Description	
PA1	Encoder A-phase signal input terminal	A-, B- and Z-phase signals are input from the encoder.	
PA2	Encoder A-phase inverse signal input terminal		
PB1	Encoder B-phase signal input terminal		
PB2	Encoder B-phase inverse signal input terminal		
PZ1	Encoder Z-phase signal input terminal		
PZ2	Encoder Z-phase inversion signal input terminal		
PG	Encoder power supply (positive side) input terminal	Input terminal for the encoder power supply. Connect the external power supply ($5 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}, 24 \mathrm{~V}$) and the encoder power cable.	
SD	Encoder power supply ground terminal		
PIN	Not used.		
PO			

(3) Switches of the FR-A7AP

- Encoder specification selection switch (SW1)

Select either differential line driver or complementary
It is initially set to the differential line driver. Switch its position according to output circuit.

Complementary

- Terminating resistor selection switch (SW2)

Select ON/OFF of the internal terminating resistor. Set the switch to ON (initial status) when an encoder output type is differential line driver and set to OFF when complementary.
ON : with internal terminating resistor (initial status)
OFF: without internal terminating resistor
Internal terminating resistor-ON (initial status)

REMARKS

Set all switches to the same setting (ON/OFF).
If the encoder output type is differential line driver, set the terminating resistor switch to the "OFF" position when sharing the same encoder with other unit (NC (numerical controller), etc.) or a terminating resistor is connected to other unit.

Internal terminating resistor-OFF

- Motor used and switch setting

Motor		Encoder Specification Selection Switch (SW1)	Terminating Resistor Selection Switch (SW2)	Power Specifications *2
Mitsubishi standard motor with encoder Mitsubishi high efficiency motor with encoder	SF-JR	Differential	ON	5 V
	SF-HR	Differential	ON	5 V
	Others	*1	*1	*1
Mitsubishi constant-torque motor with encoder	SF-JRCA	Differential	ON	5 V
	SF-HRCA	Differential	ON	5 V
	Others	*1	*1	*1
Vector control dedicated motor	SF-V5RU	Complimentary	OFF	12 V
Other manufacturer motor with encoder	-	${ }^{*}$	*1	${ }^{*}$

*1 Set according to the motor (encoder) used.
*2 Choose a power supply ($5 \mathrm{~V} / 12 \mathrm{~V} / 15 \mathrm{~V} / 24 \mathrm{~V}$) for encoder according to the encoder used.

CAUTION

SW3 switch is for manufacturer setting. Do not change the setting.

- Encoder specification

Item	Encoder for SF-JR/HR/JRCA/HRCA	Encoder for SF-V5RU
Resolution	1024 Pulse/Rev	2048 Pulse/Rev
Power supply voltage	$5 \mathrm{VDC} \pm 10 \%$	$12 \mathrm{VDC} \pm 10 \%$
Current consumption	150 mA	150 mA
Output signal form	A, B phases (90 Z phase shift) Z phase: 1 pulse/rev	A, B phases $\left(90^{\circ}\right.$ phase shift) Z phase: 1 pulse/rev
Output circuit	Differential line driver 74LS113 equivalent	Complimentary
Output voltage	H level: 2.4 V or more L level: 0.5 V or less	H level: "Power supply for encoder-3V" or more L level: 3 V or less

CAUTION

Encoder with resolution of 1000 to 4096 pulse/rev is recommended.
(4) Encoder Cable

Type	Length $\mathbf{L}(\mathbf{m})$
FR-JCBL5	5
FR-JCBL15	15
FR-JCBL30	30

FR-A701

* As the terminal block of FR-A7AP is an insertion type, earthing cables need to be modified. (See below)
- When using the dedicated encoder cable (FR-JCBL, FR-V5CBL, etc.) for the conventional motor, cut the crimpling terminal of the encoder cable and strip its sheath to make its cables loose.
Also, protect the shielded cable of the twisted pair shielded cable to ensure that it will not make contact with the conductive area.
Wire the stripped wire after twisting it to prevent it from becoming loose. In addition, do not solder it.

Use a blade terminal as necessary.

REMARKS

Information on blade terminals
Commercially available product examples (as of January 2010)

- Phoenix Contact Co.,Ltd.

Terminal Screw Size	Wire Size (mm ${ }^{\mathbf{2}}$)	Blade Terminal Model		Blade terminal crimping tool
		with insulation sleeve	without insulation sleeve	
M 2	$0.3,0.5$	$\mathrm{Al} 0,5-6 \mathrm{WH}$	$\mathrm{A} 0,5-6$	C

- NICHIFU Co.,Ltd.

Terminal Screw Size	Wire Size (mm ${ }^{\mathbf{2}}$)	Blade terminal product number	Insulation product number	Blade terminal crimping tool
M2	0.3 to 0.75	BT $0.75-7$	VC 0.75	NH 67

When using the blade terminal (without insulation sleeve),
use care so that the twisted wires do not come out.

Connection terminal compatibility table

Motor		SF-V5RU, SF-THY	SF-JR/HR/JRCA/HRCA (with Encoder)			
Encoder cable					FR-V7CBL	
FR-A7AP terminal	PA1	PA	PA			
	PA2	Keep this open.	PAR			
	PB1	PB	PB			
	PB2	Keep this open.	PBR			
	PZ1	PZ	PZ			
	PZ2	Keep this open.	5E			
	PG	PG	AG2			
	SD	SD				

(5) Wiring

- Speed control

Standard motor with encoder (SF-JR), 5V differential line driver	Vector control dedicated motor (SF-V5RU, SF-THY), 12V complementary

- Torque control

Standard motor with encoder (SF-JR), 5V differential line driver	Vector control dedicated motor (SF-V5RU, SF-THY), 12V complementary

- Position control

*1 The pin number differs according to the encoder used.
Speed control, torque control, and position control by pulse train input are properly performed without the connection of the Z-phase.
*2 Connect the encoder so that there is no looseness between the motor and motor shaft. Speed ratio should be 1:1.
*3 Earth (Ground) the shielded cable of the encoder cable to the enclosure with a P clip, etc. (Refer to page 33.)
*4 For the complementary, set the terminating resistor selection switch to off position. (Refer to page 29.)
*5 A separate power supply of $5 \mathrm{~V} / 12 \mathrm{~V} / 15 \mathrm{~V} / 24 \mathrm{~V}$ is necessary according to the encoder power specification.
*6 For terminal compatibility of the FR-JCBL, FR-V7CBL and FR-A7AP, refer to page 31.
*7 For the fan of the 7.5 kW or less dedicated motor, the power supply is single phase. ($200 \mathrm{~V} / 50 \mathrm{~Hz}, 200$ to $230 \mathrm{~V} / 60 \mathrm{~Hz}$)
*8 Assign OH (external thermal input) signal to the terminal CS. (Set "7" in Pr. 186) Connect a $2 \mathrm{~W} 1 \mathrm{k} \Omega$ resistor between the terminal PC and $\mathrm{CS}(\mathrm{OH})$. Install the resistor pushing against the bottom part of the terminal block so as to avoid a contact with other cables.
Refer to Chapter 4 of the Instruction Manual (Applied) for details of Pr. 186 CS terminal function selection.
*9 Assign the function using Pr. 178 to Pr. 184, Pr. 187 to Pr. 189 (input terminal function
 selection).
*10 When position control is selected, terminal JOG function is invalid and the simple position pulse train input terminal becomes valid.
*11 Assign the function using Pr. 190 to Pr. 194 (output terminal function selection).
(6) Instructions for encoder cable wiring
- Use twisted pair shield cables $\left(0.2 \mathrm{~mm}^{2}\right.$ or larger) to connect the FR-A7AP and position detector. Cables to terminals PG and SD should be connected in parallel or be larger in size according to the cable length.
To protect the cables from noise, run them away from any source of noise (e.g. the main circuit and power supply voltage).

Wiring Length	Parallel Connection		Larger-Size Cable
Within 10m	At least two cables in parallel	Cable gauge $0.2 \mathrm{~mm}^{2}$	$0.4 \mathrm{~mm}^{2}$ or larger
Within 20 m	At least four cables in parallel		$0.75 \mathrm{~mm}^{2}$ or larger
Within 100 m *	At least six cables in parallel		$1.25 \mathrm{~mm}^{2}$ or larger

When differential line driver is set and a wiring length is 30 m or more
The wiring length can be extended to 100 m by slightly increasing the power by 5 V (approx. 5.5 V) using six or more cables with gauge size of $0.2 \mathrm{~mm}^{2}$ in parallel or a cable with gauge size of $1.25 \mathrm{~mm}^{2}$ or more. Note that the voltage applied should be within power supply specifications of encoder.

- To reduce noise of the encoder cable, earth (ground) the encoder shielded cable to the enclosure (as near as the inverter) with a P clip or U clip made of metal.

REMARKS

For details of the optional encoder dedicated cable (FR-JCBL/FR-V7CBL), refer
to page 30.
Earthing (grounding) example using a \mathbf{P} clip

The FR-V7CBL is provided with a P clip for earthing (grounding) shielded cable.

(7) Parameter for encoder (Pr. 359, Pr. 369)

Parameter Number	Name	Initial Value	Setting Range	Description
359	Encoder rotation direction	1	0	
			1	Forward rotation is counterclockwise rotation when viewed from A.
369	Number of encoder pulses	1024	0 to 4096	Set the number of encoder pulses output. Set the number of pulses before it is multiplied by 4.

The above parameters can be set when the FR-A7AP (option) is mounted.
(8) Motor for vector control and parameter setting

Motor Name		Pr. 9 Electronic thermal O/L relay	Pr. 71 Applied motor	Pr. 80 Motor capacity	Pr. 81 Number of motor poles	Pr. 359 Encoder rotation direction	Pr. 369 Number of encoder pulses
Mitsubishi standard motor	SF-JR	Motor rated current	0	Motor capacity	Number of motor poles	1	1024
	SF-HR	Motor rated current	40	Motor capacity	Number of motor poles	1	1024
	Others	Motor rated current	$3 * 1$	Motor capacity	Number of motor poles	*2	* 2
Mitsubishi constanttorque motor	SF-JRCA 4P	Motor rated current	1	Motor capacity	4	1	1024
	SF-HRCA	Motor rated current	50	Motor capacity	Number of motor poles	1	1024
	Others	Motor rated current	13 *	Motor capacity	Number of motor poles	*2	*2
Mitsubishi vector control dedicated motor	SF-V5RU (1500r/min series)	0 *	30	Motor capacity	4	1	2048
	SF-V5RU (except for 1500r/ min series)	0 *	13 *	Motor capacity	4	1	2048
	SF-THY	0 *	33 *1	Motor capacity	4	1	2048
Other manufacturer's standard motor	-	Motor rated current	$3 * 1$	Motor capacity	Number of motor poles	*2	*2
Other manufacturer's constant-torque motor	-	Motor rated current	13 *1	Motor capacity	Number of motor poles	*2	*2

Values in the bolded frame are initial values.
*1 Offline auto tuning is necessary. (Refer to page 71)
*2 Set this parameter according to the motor (encoder) used.
*3 Use thermal protector input provided with the motor.

- Parameters referred to *

[^3]（9）Combination with a vector control dedicated motor
Refer to the table below when using with a vector control dedicated motor．
－Combination with the SF－V5RU

Voltage	200V class			400V class		
Rated speed	1500r／min					
Base frequency	50 Hz					
Maximum speed	3000r／min					
Motor capacity	Motor frame number	Motor model	Inverter model	Motor frame number	Motor model	Inverter model
3.7 kW	112M	SF－V5RU3K	FR－A721－5．5K	－	－	－
5.5 kW	132 S	SF－V5RU5K	FR－A721－7．5K	132 S	SF－V5RUH5K	FR－A741－7．5K
7．5kW	132M	SF－V5RU7K	FR－A721－11K	132M	SF－V5RUH7K	FR－A741－11K
11 kW	160M	SF－V5RU11K	FR－A721－15K	160M	SF－V5RUH11K	FR－A741－15K
15 kW	160L	SF－V5RU15K	FR－A721－18．5K	160L	SF－V5RUH15K	FR－A741－18．5K
18.5 kW	180M	SF－V5RU18K	FR－A721－22K	180M	SF－V5RUH18K	FR－A741－22K
22kW	180M	SF－V5RU22K	FR－A721－30K	180M	SF－V5RUH22K	FR－A741－30K
30kW	200L＊	SF－V5RU30K	FR－A721－37K	200L＊2	SF－V5RUH30K	FR－A741－37K
37kW	200L＊	SF－V5RU37K	FR－A721－45K	200L＊2	SF－V5RUH37K	FR－A741－45K
45kW	200L＊2	SF－V5RU45K	FR－A721－55K	200L＊2	SF－V5RUH45K	FR－A741－55K

－Combination with the SF－V5RU1，3， 4 and SF－THY

	SF－V5RU口1（1：2）			SF－V5RU口3（1：3）			SF－V5RU口4（1：4）		
Voltage	200V class								
Rated speed	1000r／min			1000r／min			500r／min		
Base frequency	33.33 Hz			33.33 Hz			16.6 Hz		
Maximum speed	2000r／min			3000r／min			2000r／min		
Motor capacity	Motor frame number	Motor model	Inverter model	Motor frame number	Motor model	Inverter model	Motor frame number	Motor model	Inverter model
3．7kW	132S	SF－V5RU3K1	FR－A721－5．5K	132M	SF－V5RU3K3	FR－A721－5．5K	160L	SF－V5RU3K4	FR－A721－7．5K
5.5 kW	132M	SF－V5RU5K1	FR－A721－7．5K	160M	SF－V5RU5K3	FR－A721－7．5K	180L	SF－V5RU5K4	FR－A721－7．5K
7．5kW	160M	SF－V5RU7K1	FR－A721－11K	160L	SF－V5RU7K3	FR－A721－11K	200L	SF－V5RU7K4	FR－A721－11K
11 kW	160L	SF－V5RU11K1	FR－A721－15K	180M	SF－V5RU11K3	FR－A721－15K	225 S	SF－V5RU11K4	FR－A721－15K
15 kW	180M	SF－V5RU15K1	FR－A721－18．5K	180L	SF－V5RU15K3	FR－A721－18．5K	225 S	SF－V5RU15K4	FR－A721－22K
18．5kW	180L	SF－V5RU18K1	FR－A721－22K	200L	SF－V5RU18K3	FR－A721－22K	250MD	SF－THY	FR－A721－22K
22 kW	200L	SF－V5RU22K1	FR－A721－30K	200L	SF－V5RU22K3	FR－A721－30K	280MD	SF－THY	FR－A721－30K
30kW	200L＊3	SF－V5RU30K1	FR－A721－37K	225S＊1	SF－V5RU30K3	FR－A721－37K	280MD	SF－THY	FR－A721－37K
37kW	225S	SF－V5RU37K1	FR－A721－45K	250MD＊1	SF－THY	FR－A721－45K	280MD	SF－THY	FR－A721－45K
45kW	250MD	SF－THY	FR－A721－55K	250MD＊1	SF－THY	FR－A721－55K	280MD	SF－THY	FR－A721－55K

[^4]
3 PRECAUTIONS FOR USE OF THE INVERTER

3.1 EMC and leakage currents

3.1.1 Leakage currents and countermeasures

Capacitances exist between the inverter I/O cables, other cables and earth and in the motor, through which a leakage current flows. Since its value depends on the static capacitances, carrier frequency, etc., low acoustic noise operation at the increased carrier frequency of the inverter will increase the leakage current. Therefore, take the following measures. Select the earth leakage circuit breaker according to its rated sensitivity current, independently of the carrier frequency setting.

(1) To-earth (ground) leakage currents

Leakage currents may flow not only into the inverter's own line but also into the other lines through the earth (ground) cable, etc. These leakage currents may operate earth (ground) leakage circuit breakers and earth leakage relays unnecessarily.

- Suppression technique
- If the carrier frequency setting is high, decrease the Pr. 72 PWM frequency selection setting. Note that motor noise increases. Selecting Pr. 240 Soft-PWM operation selection makes the sound inoffensive.
- By using earth leakage circuit breakers designed for harmonic and surge suppression in the inverter's own line and other line, operation can be performed with the carrier frequency kept high (with low noise).
- To-earth (ground) leakage currents
- Take caution as long wiring will increase the leakage current. Decreasing the carrier frequency of the inverter reduces the leakage current.
Increasing the motor capacity increases the leakage current. The leakage current of the 400 V class is larger than that of the 200 V class.

(2) Line-to-line leakage currents

Harmonics of leakage currents flowing in static capacitances between the inverter output cables may operate the external thermal relay unnecessarily. When the wiring length is long (50 m or more) for the 400 V class small-capacity model (7.5 K or lower), the external thermal relay is likely to operate unnecessarily because the ratio of the leakage current to the rated motor current increases.

- Line-to-line leakage current data example (200V class)

Motor Capacity	Rated Motor	Leakage Currents(mA)	
	(kW)	Current(A)	Wiring length 50m

[^5]

- Measures
- Use Pr. 9 Electronic thermal O/L relay.

If the carrier frequency setting is high, decrease the Pr. 72 PWM frequency selection setting. Note that motor noise increases. Selecting Pr. 240 Soft-PWM operation selection makes the sound inoffensive. To ensure that the motor is protected against line-to-line leakage currents, it is recommended to use a temperature sensor to directly detect motor temperature.

- Installation and selection of moulded case circuit breaker

Install a moulded case circuit breaker (MCCB) on the power receiving side to protect the wiring of the inverter input side. Select the MCCB according to the inverter input side power factor (which depends on the power supply voltage, output frequency and load). Especially for a completely electromagnetic MCCB, one of a slightly large capacity must be selected since its operation characteristic varies with harmonic currents. (Check it in the data of the corresponding breaker.) As an earth leakage circuit breaker, use the Mitsubishi earth leakage circuit breaker designed for harmonics and surge suppression.

(3) Selection of rated sensitivity current of earth leakage circuit breaker

When using the earth leakage circuit breaker with the inverter circuit, select its rated sensitivity current as follows, independently of the PWM carrier frequency:

- Breaker designed for harmonic and surge suppression Rated sensitivity current:
$\operatorname{l} \Delta \mathrm{n} \geq 10 \times(\lg 1+\lg n+\lg \mathrm{i}+\lg 2+\lg m)$
Standard breaker
Rated sensitivity current:
$\operatorname{l} \Delta \mathrm{n} \geq 10 \times\{\lg 1+\lg n+\lg \mathrm{i}+3 \times(\lg 2+\lg m)\}$

<Example>
$\lg 1, \lg 2:$ Leakage currents in wire path during commercial power supply operation
Ign: Leakage current of inverter input side noise filter Igm: Leakage current of motor during commercial power supply operation
Igi: Leakage current of inverter unit

		Breaker Designed for Harmonic and Surge Suppression	Standard Breaker
	Leakage current lg1 (mA)	$33 \times \frac{5 \mathrm{~m}}{1000 \mathrm{~m}}=0.17$	
	Leakage current lgn (mA)	0 (without noise filter)	
	Leakage current Igi (mA)	1	
	Leakage current lg2 (mA)	$33 \times \frac{40 \mathrm{~m}}{1000 \mathrm{~m}}=1.32$	
	Motor leakage current lgm (mA)	0.29	
	Total leakage current (mA)	2.78	6.00
	Rated sensitivity current (mA) $(\geq \lg \times 10)$	30	100

CAUTION

. Install the earth leakage circuit breaker (ELB) on the input side of the inverter.

- In the λ connection earthed-neutral system, the sensitivity current is blunt against an earth (ground) fault in the inverter output side. Earthing (Grounding) must conform to the requirements of national and local safety regulations and electrical codes. (NEC section 250, IEC 536 class 1 and other applicable standards)
Use a neutral-point earthed (grounded) power supply for 400 V class inverter in compliance with EN standard.
- When the breaker is installed on the output side of the inverter, it may be unnecessarily operated by harmonics even if the effective value is less than the rating. In this case, do not install the breaker since the eddy current and hysteresis loss will increase, leading to temperature rise.
. The following models are standard breakers....BV-C1, BC-V, NVB, NV-L, NV-G2N, NV-G3NA and NV-2F earth leakage relay (except NV-ZHA), NV with AA neutral wire open-phase protection
The other models are designed for harmonic and surge suppression....NV-C/NV-S/MN series, NV30-FA, NV50-FA, BV-C2, earth leakage alarm breaker (NF-Z), NV-ZHA, NV-H

3.1.2 EMC measures

Some electromagnetic noises enter the inverter to malfunction it and others are radiated by the inverter to malfunction peripheral devices. Though the inverter is designed to have high immunity performance, it handles low-level signals, so it requires the following basic techniques. Also, since the inverter chops outputs at high carrier frequency, that could generate electromagnetic noises. If these electromagnetic noises cause peripheral devices to malfunction, EMI measures should be taken to suppress noises. These techniques differ slightly depending on EMI paths.

1) Basic techniques

- Do not run the power cables (l/O cables) and signal cables of the inverter in parallel with each other and do not bundle them.
- Use twisted shield cables for the detector connecting and control signal cables and connect the sheathes of the shield cables to terminal SD.
- Earth (Ground) the inverter, motor, etc. at one point.

2) Techniques to reduce electromagnetic noises that enter and malfunction the inverter (Immunity measures)) When devices that generate many electromagnetic noises (which use magnetic contactors, magnetic brakes, many relays, for example) are installed near the inverter and the inverter may be malfunctioned by electromagnetic noises, the following measures must be taken:

- Provide surge suppressors for devices that generate many electromagnetic noises to suppress electromagnetic noises.
- Fit data line filters (page 38) to signal cables.
- Earth (Ground) the shields of the detector connection and control signal cables with cable clamp metal.

3) Techniques to reduce electromagnetic noises that are radiated by the inverter to malfunction peripheral devices (EMI measures)
Inverter-generated electromagnetic noises are largely classified into those radiated by the cables connected to the inverter and inverter main circuits (I/O), those electromagnetically and electrostatically induced to the signal cables of the peripheral devices close to the main circuit power supply, and those transmitted through the power supply cables.

Propagation Path	Measures
	When devices that handle low-level signals and are liable to malfunction due to electromagnetic noises, e.g. instruments, receivers and sensors, are contained in the enclosure that contains the inverter or when their signal cables are run near the inverter, the devices may be malfunctioned by air-propagated electromagnetic noises. The following measures must be taken: (1) Install easily affected devices as far away as possible from the inverter. (2) Run easily affected signal cables as far away as possible from the inverter and its I/O cables. (3) Do not run the signal cables and power cables (inverter I/O cables) in parallel with each other and do not bundle them. (4) Insert common mode filters into I/O and capacitors between the input lines to suppress cable- radiated noises. (5) Use shield cables as signal cables and power cables and run them in individual metal conduits to produce further effects.
2) 3)	When the signal cables are run in parallel with or bundled with the power cables, magnetic and static induction noises may be propagated to the signal cables to malfunction the devices and the following measures must be taken: (1) Install easily affected devices as far away as possible from the inverter. (2) Run easily affected signal cables as far away as possible from the I/O cables of the inverter. (3) Do not run the signal cables and power cables (inverter I/O cables) in parallel with each other and do do not bundle them. (4) Use shield cables as signal cables and power cables and run them in individual metal conduits to produce further effects.
4) 5) 6)	When the power supplies of the peripheral devices are connected to the power supply of the inverter in the same eline, inverter-generated noises may flow back through the power supply cables to malfunction the devices. In such a case, installing the common mode filter (FR-BLF) to the power cables (output cable) of the inverter will prevent malfunction.
7)	When a closed loop circuit is formed by connecting the peripheral device wiring to the inverter, leakage currents may flow through the earth (ground) cable of the inverter to malfunction the device. In such a case, disconnection of the earth (ground) cable of the device may cause the device to operate properly.
8)	

- Data line filter

Data line filter is effective as an EMC measure. Provide a data line filter for the detector cable, etc.

- EMC measures

3.1.3 Power supply harmonics

The inverter may generate power supply harmonics from its converter circuit to affect the power generator, power capacitor etc. Power supply harmonics are different from noise and leakage currents in source, frequency band and transmission path. Take the following countermeasure suppression techniques.
This inverter has a built-in AC reactor (FR-HAL) and a circuit type specified in Harmonic suppression guideline in Japan is three-phase bridge (capacitor smoothed) and with reactor (AC side).

3.1.4 Harmonic suppression guideline

Harmonic currents flow from the inverter to a power receiving point via a power transformer. The harmonic suppression guideline was established to protect other consumers from these outgoing harmonic currents.
The three-phase 200 V input specifications 3.7 kW or less are previously covered by "Harmonic suppression guideline for household appliances and general-purpose products" and other models are covered by "Harmonic suppression guideline for consumers who receive high voltage or special high voltage". However, the general-purpose inverter has been excluded from the target products covered by "Harmonic suppression guideline for household appliances and general-purpose products" in January 2004. Later, this guideline was repealed on September 6, 2004. All capacities of all models are now target products of "Harmonic suppression guideline for consumers who receive high voltage or special high voltage" (hereinafter referred to as "Guideline for specific consumers").
"Guideline for specific consumers"
This guideline sets forth the maximum values of harmonic currents outgoing from a high-voltage or especially highvoltage consumer who will install, add or renew harmonic generating equipment. If any of the maximum values is exceeded, this guideline requires that consumer to take certain suppression measures.

Table 1 Maximum Values of Outgoing Harmonic Currents per 1kW Contract Power

Received Power Voltage	5th	7th	11th	13th	17th	19th	23rd	Over 23rd
6.6 kV	3.5	2.5	1.6	1.3	1.0	0.9	0.76	0.70
22 kV	1.8	1.3	0.82	0.69	0.53	0.47	0.39	0.36
33 kV	1.2	0.86	0.55	0.46	0.35	0.32	0.26	0.24

(1) Application of the harmonic suppression guideline for specific consumers

Table 2 Conversion factors for FR-A701 series

Class		Conversion Factor (Ki)	
3	Three-phase bridge (Capacitor smoothing)	With reactor (AC side)	$\mathrm{K} 32=1.8$

Table 3 Equivalent Capacity Limits

Received Power Voltage	Reference Capacity
6.6 kV	50 kVA
$22 / 33 \mathrm{kV}$	300 kVA
66 kV or more	2000 kVA

Table 4 Harmonic content (Values of the fundamental current is 100\%)

Reactor	5th	7th	11th	13th	17th	19th	23rd	25th
Used (AC side)	38	14.5	7.4	3.4	3.2	1.9	1.7	1.3

1) Calculation of equivalent capacity $P 0$ of harmonic generating equipment

The "equivalent capacity" is the capacity of a 6-pulse converter converted from the capacity of consumer's harmonic generating equipment and is calculated with the following equation. If the sum of equivalent capacities is higher than the limit in Table 3, harmonics must be calculated with the following procedure:
$\mathrm{PO}=\Sigma(\mathrm{Ki} \times \mathrm{Pi})[\mathrm{kVA}]$
Ki: Conversion factor(According to Table 2)
Pi: Rated capacity of harmonic generating equipment* $[\mathrm{kVA}]$
i : Number indicating the conversion circuit type

* Rated capacity: Determined by the capacity of the applied motor and found in Table 5. It should be noted that the rated capacity used here is used to calculate generated harmonic amount and is different from the power supply capacity required for actual inverter drive.

2) Calculation of outgoing harmonic current

Outgoing harmonic current $=$ fundamental wave current (value converted from received power voltage) \times operation ratio \times harmonic content

- Operation ratio: Operation ratio $=$ actual load factor \times operation time ratio during 30 minutes
- Harmonic content: Found in Table 4.

Table 5 Rated capacities and outgoing harmonic currents of inverter-driven motors

Applied Motor (kW)	Rated Current (A)		Fundamental Wave Current Converted from 6.6 kV (mA)	Rated Capacity (kVA)	Outgoing Harmonic Current Converted from 6.6kV (mA) (With reactor, 100\% operation ratio)							
	200V	400V			5th	7th	11th	13th	17th	19th	23rd	25th
5.5	19.1	9.55	579	6.77	220.0	83.96	42.85	19.69	18.53	11.00	9.843	7.527
7.5	25.6	12.8	776	9.07	294.9	112.5	57.42	26.38	24.83	14.74	13.19	10.09
11	36.9	18.5	1121	13.1	426.0	162.5	82.95	38.11	35.87	21.30	19.06	14.57
15	49.8	24.9	1509	17.6	573.4	218.8	111.7	51.31	48.29	28.67	25.65	19.62
18.5	61.4	30.7	1860	21.8	706.8	269.7	137.6	63.24	59.52	35.34	31.62	24.18
22	73.1	36.6	2220	25.9	843.6	321.9	164.3	75.48	71.04	42.18	37.74	28.86
30	98.0	49.0	2970	34.7	1129	430.7	219.8	101.0	95.04	56.43	50.49	38.61
37	121	60.4	3660	42.8	1391	530.7	270.8	124.4	117.1	69.54	62.22	47.58
45	147	73.5	4450	52.1	1691	645.3	329.3	151.3	142.4	84.55	75.65	57.85
55	180	89.9	5450	63.7	2071	790.3	403.3	185.3	174.4	103.6	92.65	70.85

3) Harmonic suppression technique requirement

If the outgoing harmonic current is higher than the maximum value per 1 kW (contract power) \times contract power, a harmonic suppression technique is required.
4)Harmonic suppression techniques

No.	Item	Description
1	Installation of power factor improving capacitor	When used with a series reactor, the power factor improving capacitor has an effect of absorbing harmonic currents.
2	Transformer multi-phase operation	Use two transformers with a phase angle difference of 30° as in $\lambda-\Delta, \Delta-\Delta$ combination to provide an effect corresponding to 12 pulses, reducing low-degree harmonic currents.
3	Passive filter (AC filter)	A capacitor and a reactor are used together to reduce impedances at specific frequencies, producing a great effect of absorbing harmonic currents.
4	Active filter	This filter detects the current of a circuit generating a harmonic current and generates a harmonic current equivalent to a difference between that current and a fundamental wave current to suppress a harmonic current at a detection point, providing a great effect of absorbing harmonic currents.

3.2 Power-off and magnetic contactor (MC)

(1) Inverter input side magnetic contactor (MC)

On the inverter input side, it is recommended to provide an MC for the following purposes.
(Refer to page 3 for selection.)

1) To release the inverter from the power supply when the fault occurs or when the drive is not functioning (e.g. emergency stop operation).
2) To prevent any accident due to an automatic restart at restoration of power after an inverter stop made by a power failure
3) To separate the inverter from the power supply to ensure safe maintenance and inspection work

The inverter's input side MC is used for the above purpose, select class JEM1038-AC3MC for the inverter input side current when making an emergency stop during normal operation.

REMARKS

Since repeated inrush currents at power on will shorten the life of the converter circuit (switching life is about 500,000 times.), frequent starts and stops of the MC must be avoided. Turn ON/OFF the inverter start controlling terminals (STF, STR) to run/stop the inverter.

- Inverter start/stop circuit example

As shown on the left, always use the start signal (ON or OFF of STF (STR) signal) to make a start or stop.
*1 When the power supply is 400 V class, install a step-down transformer.
*2 Connect the power supply terminals R1/L11, S1/L21 of the control circuit to the input side of the MC to hold an alarm signal when the inverter's protective circuit is activated. At this time, remove jumpers across terminals R/L1-R1/L11 and S/L2-S1/L21. (Refer to page 19 for removal of the jumper.)

(2) Handling of the inverter output side magnetic contactor

Switch the magnetic contactor between the inverter and motor only when both the inverter and motor are at a stop. When the magnetic contactor is turned ON while the inverter is operating, overcurrent protection of the inverter and such will activate. When an MC is provided to switch to a commercial power supply, for example, it is recommended to use bypass-inverter switchover function Pr. 135 to Pr. 139 (Chapter 4 of the Instruction Manual (Applied)).

3.3 Inverter-driven 400V class motor

In the PWM type inverter, a surge voltage attributable to wiring constants is generated at the motor terminals. Especially for a 400 V class motor, the surge voltage may deteriorate the insulation. When the 400 V class motor is driven by the inverter, consider the following measures:

-Measures

It is recommended to take either of the following measures:
(1) Rectifying the motor insulation and limiting the PWM carrier frequency according to the wiring length

For the 400 V class motor, use an insulation-enhanced motor.
Specifically,
1)Specify the " 400 V class inverter-driven insulation-enhanced motor".
2)For the dedicated motor such as the constant-torque motor and low-vibration motor, use the "inverter-driven, dedicated motor".
3)Set Pr. 72 PWM frequency selection as indicated below according to the wiring length

	Wiring Length		
	$\mathbf{5 0 m}$ or less	$\mathbf{5 0 m}$ to $\mathbf{1 0 0 m}$	exceeding $\mathbf{1 0 0 m}$
Pr. 72 PWM frequency selection	$15(14.5 \mathrm{kHz})$ or less	$9(9 \mathrm{kHz})$ or less	$4(4 \mathrm{kHz})$ or less

(2) Suppressing the surge voltage on the inverter side

Connect the surge voltage suppression filter (FR-ASF-H/FR-BMF-H) on the inverter output side.

CAUTION

- For explanation of surge voltage suppression filter (FR-ASF-H/FR-BMF-H), refer to the manual of each option.
- Do not perform Real sensorless vector control and vector control with a surge voltage suppression filter (FR-ASF-H) connected.
- A surge voltage suppression filter (FR-ASF-H/FR-BMF-H) can be used under V/F control and Advanced magnetic flux vector control.

3.4 Precautions for use of the inverter

The FR-A701 series is a highly reliable product, but incorrect peripheral circuit making or operation/handling method may shorten the product life or damage the product.
Before starting operation, always recheck the following items.
(1) Use crimping terminals with insulation sleeve to wire the power supply and motor.
(2) Application of power to the output terminals (U, V, W) of the inverter will damage the inverter. Never perform such wiring.
(3) After wiring, wire offcuts must not be left in the inverter.

Wire offcuts can cause an alarm, failure or malfunction. Always keep the inverter clean. When drilling mounting holes in an enclosure etc., take care not to allow chips and other foreign matter to enter the inverter.
(4) Use cables of the size to make a voltage drop $\mathbf{2 \%}$ maximum.

If the wiring distance is long between the inverter and motor, a main circuit cable voltage drop will cause the motor torque to decrease especially at the output of a low frequency.
Refer to page 16 for the recommended cable sizes.
(5) The overall wiring length should be within 500 m with unshielded wires (within 100 m for the operation under vector control or when using shielded wires).
Especially for long distance wiring, the fast-response current limit function may decrease or the equipment connected to the output side may malfunction or become faulty under the influence of a charging current due to the stray capacity of the wiring. Therefore, note the overall wiring length. (Refer to page 18.)
(6) Electromagnetic wave interference

The input/output (main circuit) of the inverter includes high frequency components, which may interfere with the communication devices (such as AM radios) used near the inverter. In this case, connecting a capacitor type filter will reduce electromagnetic wave interference.
(7) Do not install a power factor correction capacitor, surge suppressor or capacitor type filter on the inverter output side.
This will cause the inverter to trip or the capacitor, and surge suppressor to be damaged. If any of the above devices is installed, immediately remove it.
(8) For some short time after the power is switched off, a high voltage remains in the smoothing capacitor. When accessing the inverter for inspection, wait for at least 10 minutes after the power supply has been switched off, and then make sure that the voltage across the main circuit terminals $\mathrm{P} /+-\mathrm{N} /-$ of the inverter is not more than 30VDC using a tester, etc. The capacitor is charged with high voltage for some time after power off and it is dangerous.
(9) A short circuit or earth (ground) fault on the inverter output side may damage the inverter modules.

- Fully check the insulation resistance of the circuit prior to inverter operation since repeated short circuits caused by peripheral circuit inadequacy or an earth (ground) fault caused by wiring inadequacy or reduced motor insulation resistance may damage the inverter modules.
Fully check the to-earth (ground) insulation and inter-phase insulation of the inverter output side before power-on. Especially for an old motor or use in hostile atmosphere, securely check the motor insulation resistance etc.
(10) Do not use the inverter input side magnetic contactor to start/stop the inverter.

Since repeated inrush currents at power ON will shorten the life of the converter circuit (switching life is about 500,000 times), frequent starts and stops of the MC must be avoided.
Always use the start signal (ON/OFF of STF and STR signals) to start/stop the inverter. (Refer to page 12)
(11) Do not apply a voltage higher than the permissible voltage to the inverter I/O signal circuits.

Application of permissible voltage to the inverter I/O signal circuit and incorrect polarity may damage the I/O terminal. Especially check the wiring to prevent the speed setting potentiometer from being connected incorrectly to short terminals 10E-5.
(12) Provide electrical and mechanical interlocks for MC1 and MC2 which are used for bypass operation.
When the wiring is incorrect or if there is an electronic bypass circuit as shown on the right, the inverter will be damaged by leakage current from the power supply due to arcs generated at the time of switch-over or chattering caused by a sequence error.
(Commercial operation can not be performed with the vector dedicated motor (SF-V5RU, SF-THY).)

(13) If the machine must not be restarted when power is restored after a power failure, provide a magnetic contactor in the inverter's input side and also make up a sequence which will not switch on the start signal.
If the start signal (start switch) remains on after a power failure, the inverter will automatically restart as soon as the power is restored.
(14) Inverter input side magnetic contactor (MC)

On the inverter input side, connect a MC for the following purposes. (Refer to page 4 for selection.)
1)To release the inverter from the power supply when a fault occurs or when the drive is not functioning (e.g. emergency stop operation). For example, MC avoids overheat or burnout of the brake resistor when heat capacity of the resistor is insufficient or brake regenerative transistor is damaged with short while connecting an optional brake resistor.
2)To prevent any accident due to an automatic restart at restoration of power after an inverter stop made by a power failure
3)To separate the inverter from the power supply to ensure safe maintenance and inspection work. The inverter's input side MC is used for the above purpose, select class JEM1038-AC3 MC for the inverter input side current when making an emergency stop during normal operation.
(15) Handling of inverter output side magnetic contactor

Switch the magnetic contactor between the inverter and motor only when both the inverter and motor are at a stop. When the magnetic contactor is turned ON while the inverter is operating, overcurrent protection of the inverter and such will activate. When MC is provided for switching to the commercial power supply, for example, switch it ON/OFF after the inverter and motor have stopped.
(16) A motor with encoder is necessary for vector control. In addition, connect the encoder directly to the backlashfree motor shaft. (An encoder is not necessary for Real sensorless vector control.)
(17) Countermeasures against inverter-generated EMI

If electromagnetic noise generated from the inverter causes frequency setting signal to fluctuate and motor rotation speed to be unstable when changing motor speed with analog signal, the following countermeasures are effective.
. Do not run the signal cables and power cables (inverter I/O cables) in parallel with each other and do not bundle them.

- Run signal cables as far away as possible from power cables (inverter I/O cables).
- Use shield cables as signal cables.
- Install a ferrite core on the signal cable (Example: ZCAT3035-1330 TDK).
(18) Instructions for overload operation

When performing an operation of frequent start/stop with the inverter, rise/fall in the temperature of the transistor element of the inverter will repeat due to a continuous flow of large current, shortening the life from thermal fatigue. Since thermal fatigue is related to the amount of current, the life can be increased by reducing current at locked condition, starting current, etc. Decreasing current may increase the life. However, decreasing current will result in insufficient torque and the inverter may not start. Therefore, choose the inverter which has enough allowance for current (up to 2 rank larger in capacity).
(19) Make sure that the specifications and rating match the system requirements.

3.5 Failsafe of the system which uses the inverter

When a fault occurs, the inverter trips to output a fault signal. However, a fault output signal may not be output at an inverter fault occurrence when the detection circuit or output circuit fails, etc. Although Mitsubishi assures best quality products, provide an interlock which uses inverter status output signals to prevent accidents such as damage to machine when the inverter fails for some reason and at the same time consider the system configuration where failsafe from outside the inverter, without using the inverter, is enabled even if the inverter fails.
(1) Interlock method which uses the inverter status output signals

By combining the inverter status output signals to provide an interlock as shown below, an inverter alarm can be detected.

No.	Interlock Method	Check Method	Used Signals	Refer to Page
1)	Inverter protective function operation	Operation check of an alarm contact Circuit error detection by negative logic	Fault output signal (ALM signal)	Refer to Chapter 4 of the Instruction Manual (Applied)
2)	Inverter running status	Operation ready signal check	Operation ready signal (RY signal)	Refer to Chapter 4 of the Instruction Manual (Applied)
3)	Inverter running status	Logic check of the start signal and running signal	Start signal (STF signal, STR signal) Running signal (RUN signal)	Refer to Chapter 4 of the Instruction Manual (Applied)
4)	Inverter running status	Logic check of the start signal and output current	Start signal (STF signal, STR signal) Output current detection signal (Y12 signal)	Refer to Chapter 4 of the Instruction Manual (Applied)

1) Check by the output of the inverter fault signal

When the fault occurs and trips the inverter, the fault output signal (ALM signal) is output (ALM signal is assigned to terminal A1B1C1 in the initial setting).
Check that the inverter functions properly.
In addition, negative logic can be set (on when the inverter is normal, off when the fault occurs).

4) Checking the motor operating status by the start signal input to the inverter and inverter output current detection signal. The output current detection signal (Y 12 signal) is output when the inverter operates and currents flows in the motor. Check if Y12 signal is output when inputting the start signal to the inverter (forward signal is STF signal and reverse signal is STR signal). Note that the current level at which Y12 signal is output is set to 150% of the inverter rated current in the initial setting, it is necessary to adjust the level to around 20% using no load current of the motor as reference with Pr. 150 Output current detection level.
For logic check, as same as the inverter running signal (RUN signal), the inverter outputs for the period from the inverter decelerates until output to the motor is stopped, configure a sequence considering the inverter deceleration time.

Output Signal	Pr. 190 to Pr. 196 Setting	
	Positive logic	Negative logic
ALM	99	199
RY	11	111
RUN	0	100
Y12	12	112

- When using various signals, assign functions to Pr. 190 to Pr. 196 (output terminal function selection) referring to the table on the left.

CAUTION

- Changing the terminal assignment using Pr. 190 to Pr. 196 (output terminal function selection) may affect the other functions. Set parameters after confirming the function of each terminal.
(2) Backup method outside the inverter

Even if the interlock is provided by the inverter status signal, enough failsafe is not ensured depending on the failure status of the inverter itself. For example, when the inverter CPU fails, even if the interlock is provided using the inverter fault output signal, start signal and RUN signal output, there is a case where a fault output signal is not output and RUN signal is kept output even if an inverter fault occurs.
Provide a speed detector to detect the motor speed and current detector to detect the motor current and consider the backup system such as checking up as below according to the level of importance of the system.

1) Start signal and actual operation check

Check the motor running and motor current while the start signal is input to the inverter by comparing the start signal to the inverter and detected speed of the speed detector or detected current of the current detector. Note that the motor current runs as the motor is running for the period until the motor stops since the inverter starts decelerating even if the start signal turns OFF. For the logic check, configure a sequence considering the inverter deceleration time. In addition, it is recommended to check the three-phase current when using the current detector.
2) Command speed and actual operation check

Check if there is no gap between the actual speed and commanded speed by comparing the inverter speed command and detected speed of the speed detector.

4 DRIVING THE MOTOR

4.1 Step of operation

The inverter needs frequency command and start command. Frequency command (set frequency) determines the rotation speed of the motor. Turning ON the start command starts the motor to rotate.
Refer to the flow chart below to perform setting.

CAUTION

Check the following items before powering ON the inverter.

- Check that the inverter is installed correctly in a correct place. (Refer to page 10)
- Check that wiring is correct. (Refer to page 12)

Check that no load is connected to the motor.

When protecting the motor from overheat by the inverter, set Pr. 9 Electronic thermal O/L relay (Refer to page 57)

- When the rated frequency of the motor is 50 Hz , set Pr. 3 Base frequency (Refer to page 58)

4.2 Operation panel (FR-DU07)

4.2.1 Parts of the operation panel (FR-DU07)

Operation mode indicator

PU: Lit to indicate PU operation mode.
EXT: Lit to indicate External operation mode.
NET: Lit to indicate Network operation mode.

Unit indicator

Hz : Lit to indicate frequency.
A: Lit to indicate current.
V: Lit to indicate voltage.
(Flicker when the set frequency monitor is displayed.)

Rotation direction indicator
FWD: Lit during forward rotation
REV: Lit during reverse rotation
Lit: Forward/reverse operation
Flickering: When the frequency command is not given even if the forward/reverse command is given. When the MRS signal is input.

Monitor indicator

Lit to indicate monitoring mode.

No function

Start command forward rotation

Start command reverse rotation

Stop operation
Used to stop Run command.
Fault can be reset when protective function is activated (fault).

Operation mode switchover

Used to switch between the PU and External operation mode.
When using External operation mode (operation using a separately connected frequency setting potentiometer and start signal), press this key to light up the EXT indicator. (Change the Pr. 79 setting to use the combined mode.)
PU: PU operation mode
EXT: External operation mode

4.2.2 Basic operation (factory setting)

4.2.3 Operation lock (Press [MODE] for an extended time (2s))

Operation using the setting dial and key of the operation panel can be invalid to prevent parameter change, and unexpected start or frequency setting.

- Set "10 or 11" in Pr. 161, then press MODE for 2 s to make the setting dial and key operation invalid.
- When the setting dial and key operation are invalid,

If dial and key operation is attempted while dial and key operation are invalid, is not touched for 2 s , the monitor display appears.)

- To make the setting dial and key operation valid again, press MODE for 2 s .

POINT

Set "10 or 11" (key lock valid) in Pr. 161 Frequency setting/key lock operation selection.

CAUTION

Release the operation lock to release the PU stop by key operation.

4.2.4 Monitoring of output current and output voltage

POINT

Monitor display of output frequency, output current, and output voltage can be changed by pushing monitoring mode.

4.2.5 First priority monitor

Hold down SET for is to set monitor description to be appeared first in the monitor mode.
(To return to the output frequency monitor, hold down SET for 1 s after displaying the output frequency monitor.)

4.2.6 Setting dial push

Push the setting dial (
) to display the set frequency currently set.

4.2.7 Changing the parameter setting value

Changing example Change the Pr. 1 Maximum frequency .

? Er i to Ery are displayed ... Why?
$\varepsilon_{r}:$ appears. Write disable error
ε_{-2} appears. Write error during operation
ε_{-3} appears. Calibration error
ε_{-4} appears. Mode designation error

For details refer to page 143.

REMARKS

The number of digits displayed on the operation panel (FR-DU07) is four.
If the values to be displayed have five digits or more including decimal places, the fifth or later numerals can not be displayed nor set.
(Example) When Pr. 1
When 60 Hz is set, 60.00 is displayed.
When 120 Hz is set, 120.0 is displayed and second decimal place is not displayed nor set.

4.2.8 Parameter clear, all parameter clear

POINT

Set "1" in Pr. CL parameter clear or ALLC all parameter clear to initialize all parameters. (Parameters are not cleared when "1" is set in Pr. 77 Parameter write selection.)
Refer to the parameter list on page 103 and later for parameters to be cleared with this operation.

? \quad and E are displayed alternately ... Why?
The inverter is not in PU operation mode.

1. Press $\frac{P U}{E X T}$.

PU is lit and the monitor (4-digit LED) displays " 0 " (Pr. $79=" 0$ " (initial value)).
2. Carry out operation from step 6 again.

4.2.9 Parameter copy and parameter verification

PCPY Setting	Description
0	Cancel
1	Copy the source parameters to the operation panel.
2	Write the parameters copied to the operation panel into the destination inverter.
3	Verify parameters in the inverter and operation panel. (Refer to page 55.)

REMARKS

When the copy destination inverter is not the FR-A701 series or parameter copy write is performed after parameter copy read is stopped, "model error (,$-\underline{4}$)" is displayed.
Refer to the parameter list on page 103 and later for availability of parameter copy.
When the power is turned OFF or an operation panel is disconnected, etc. during parameter copy write, perform write again or check the values by parameter verification.
Initial settings of certain parameters are different for different capacities, so some parameter settings may be automatically changed when parameter copy is performed from a different-capacity inverter. After performing a parameter copy from a different-capacity inverter, check the parameter settings. (Refer to the parameter list (page 103) for the parameters with different initial settings for different capacities.)

(1) Parameter copy

Parameter settings can be copied to multiple inverters.
——Operation

1. Connect the operation panel to the copy source inverter.

- Connect it during a stop.

2. Press (wooes to choose the parameter setting mode.
3. Turn \bigcirc until $\boldsymbol{P C D}$ appears.
4. Press (SET) to read the currently set value. " 0 " (initial value) appears.
5. Turn \bigcirc to change it to the setting value " ${ }^{\prime}$ ".
6. Press (SEI) to copy the source parameters to the operation panel.
7. Connect the operation panel to the copy source inverter.
8. After performing steps 2 to 5 , turn \bigcirc to change it to "こ" ".
9. Press (SET) to write the parameters copied to the operation panel to the destination inverter.
10. When copy is completed, " \because " and "P[Pツ" ficker.
11. After writing the parameter values to the copy destination inverter, always reset the inverter, e.g. switch power OFF once, before starting operation.

Display

? rE: appears...Why? Parameter read error. Perform operation from step 3 again.
? $r E \mathcal{Z}$ appears...Why? Parameter write error. Perform operation from step 8 again.

(2) Parameter verification

Whether same parameter values are set in other inverters or not can be checked.

4.3 Before operation

4.3.1 Simple mode parameter list

For simple variable-speed operation of the inverter, the initial setting of the parameters may be used as they are. Set the necessary parameters to meet the load and operational specifications. Parameter setting, change and check can be made from the operation panel (FR-DU07). For details of parameters, refer to Chapter 4 of 圈 the Instruction Manual (Applied).

POINT

Only simple mode parameter can be displayed using Pr. 160 User group read selection. (All parameters are displayed with the initial setting.) Set Pr. 160 User group read selection as required. (Refer to page 52 for parameter change.)

Pr. $\mathbf{1 6 0}$	Description
9999	Only the simple mode parameters can be displayed.
0	Simple mode and extended mode parameters can be displayed.
(Initial Value)	Only the parameters registered in the user group can be displayed.
1	

Parameter Number	Name	Incre ments	Initial Value	Range	Applications	$\begin{aligned} & \text { Refer } \\ & \text { to } \\ & \text { Page } \end{aligned}$
0	Torque boost	0.1\%	3/2\%*1	0 to 30\%	Set to increase a starting torque or when the motor with a load will not rotate, resulting in an alarm [OL] and a trip [OC1] *1 The initial value differs according to the inverter capacity. (7.5 K or lower/11K or higher)	59
1	Maximum frequency	0.01 Hz	120Hz	0 to 120 Hz	Set when the maximum output frequency need to be limited.	60
2	Minimum frequency	0.01 Hz	OHz	0 to 120 Hz	Set when the minimum output frequency need to be limited.	60
3	Base frequency	0.01 Hz	60 Hz	0 to 400 Hz	Set when the rated motor frequency is 50 Hz . Check the motor rating plate.	58
4	Multi-speed setting (high speed)	0.01 Hz	60 Hz	0 to 400 Hz	Set when changing the preset speed in the parameter with a terminal.	94
5	Multi-speed setting (middle speed)	0.01 Hz	30 Hz	0 to 400 Hz		
6	Multi-speed setting (low speed)	0.01 Hz	10Hz	0 to 400 Hz		
7	Acceleration time	0.1s	5/15s*2	0 to 3600s	Acceleration/deceleration time can be set. *2 The initial value differs according to the inverter capacity. (7.5 K or lower/11K or higher)	61
8	Deceleration time	0.1s	5/15s*2	0 to 3600s		
9	Electronic thermal O/L relay	0.01A	Inverter rated current	0 to 500A	Protect the motor from overheat by the inverter. Set the rated motor current.	57
79	Operation mode selection	1	0	0, 1, 2, 3, 4, 6, 7	Select the operation command location and frequency command location.	62
125	Terminal 2 frequency setting gain frequency	0.01 Hz	60 Hz	0 to 400 Hz	Frequency for the maximum value of the potentiometer (5 V initial value) can be changed.	97
126	Terminal 4 frequency setting gain frequency	0.01 Hz	60 Hz	0 to 400 Hz	Frequency for the maximum current input (20 mA initial value) can be changed.	99
160	User group read selection	1	0	0, 1, 9999	Parameter which can be read from the operation panel and parameter unit can be restricted.	-

4．3．2 Overheat protection of the motor by the inverter（Pr．9）

Set the rated motor current in Pr． 9 Electronic thermal O / L relay to protect the motor from overheat．

Parameter Number	Name	Initial Value	Setting Range＊2	Description
$\mathbf{9}$	Electronic thermal O／L relay	Inverter rated current $*_{1}$	0 to 500A	Set the rated motor current．

＊1 Refer to page 182 for the rated inverter current value．
＊2 The minimum setting increments are 0．01A．

Operation

1．Screen at power－ON
The monitor display appears．
2．Press $\left(\frac{P U}{E X I}\right)$ to choose PU operation mode．

3．Press（MOOE）to choose the parameter setting mode．

4．Turn \bigcirc until Pr． 9 Electronic thermal O / L relay appears．
5．Press set to show the present set value．（24A for FR－A721－5．5K）

6．Turn to change the set value
to＂ご心＂（22A）
7．Press set to set．

Display

Flicker ．．．Parameter setting complete！！

By turning ，you can read another parameter．
Press SET to show the setting again．
Press SET twice to show the next parameter．

REMARKS

Since a thermal protector is provided for a vector control dedicated motor（SF－V5RU），set＂0＂in Pr． 9.

CAUTION

－Protective function by electronic thermal relay function is reset by inverter power reset and reset signal input．Avoid unnecessary reset and power－OFF．
－When two or more motors are connected to the inverter，they cannot be protected by the electronic thermal relay function． Install an external thermal relay to each motor．
－When the difference between the inverter and motor capacities is large and the setting is small，the protective characteristics of the electronic thermal relay function will be deteriorated．In this case，use an external thermal relay．
－A special motor cannot be protected by the electronic thermal relay function．Use an external thermal relay．
－PTC thermistor output built－in the motor can be input to the PTC signal（AU terminal）．For details，refer to Chapter 4 of the Instruction Manual（Applied）．

4.3.3 When the rated motor frequency is 50 Hz (Pr. 3)

First, check the motor rating plate. If a frequency given on the rating plate is " 50 Hz " only, always set Pr. 3 Base frequency to " 50 Hz ". Leaving the base frequency unchanged from " 60 Hz " may make the voltage low and the torque insufficient. It may result in an inverter trip (E.OCD) due to overload.

Parameter Number	Name	Initial Value	Setting Range	Description
$\mathbf{3}$	Base frequency	60 Hz	0 to 400 Hz	Set the frequency when the motor rated torque is generated.

Changing example Change Pr. 3 Base frequency to 50 Hz according to the motor rated frequency.

Flicker ... Parameter setting complete!!

- By turning
 you can read another parameter.
Press SET to show the setting again.
Press SET twice to show the next parameter.

REMARKS

Pr. 3 is invalid and Pr. 84 Rated motor frequency is valid under Advanced magnetic flux vector control, Real sensorless vector control, and vector control.

4.3.4 Increase the starting torque (Pr. 0)

```
V/F
```

Set this parameter when "the motor with a load will not rotate", "an alarm [OL] is output, resulting in an inverter trip due to [OC1], etc.

Parameter Number	Name	Initial Value		Setting Range	Description
$\mathbf{0}$	Torque boost	7.5 K or lower	3%	0 to 30%	Motor torque in the low-frequency range can be adjusted to the load to increase the starting motor torque.
		2%			

Changing example When the motor with a load will not rotate,

 increase the Pr. 0 value 1\% by 1% unit by looking at the motor movement. (The guideline is for about 10% change at the greatest.)

Operation

1.Screen at power-ON
 The monitor display appears.

2. Press $\frac{\text { PUT }}{E X T}$ to choose PU operation mode.

$$
\begin{aligned}
& \text { • By turning } \bigcirc \text {, you can read another parameter. } \\
& \text { • Press SET to show the setting again. } \\
& \text { - Press teT twice to show the next parameter. }
\end{aligned}
$$

REMARKS

A too large setting may cause the motor to overheat, resulting in an overcurrent trip (OL (overcurrent alarm) then E.OC1 (overcurrent trip during acceleration)), overload trip (E.THM (motor overload trip), and E.THT (inverter overload trip)).
(When a fault occurs, release the start command, and decrease the Pr. 0 setting 1\% by 1% to reset.)

POINT

If the inverter still does not operate properly after the above measures, adjust Pr. 80, Pr. 81 (Advanced magnetic flux vector control), Pr. 800 (Real sensorless vector control). The Pr. 0 setting is invalid under Advanced magnetic flux vector control, Real sensorless vector control and vector control. (Refer to Chapter 4 of the Instruction Manual (Applied).)

4.3.5 Limit the maximum and minimum output frequency (Pr. 1, Pr. 2)

Motor speed can be limited.

REMARKS

The output frequency is clamped by the Pr. 2 setting even if the set frequency is lower than the Pr. 2 setting (The frequency will not decrease to the Pr. 2 setting.)
Note that Pr. 15 Jog frequency has higher priority than the minimum frequency.
When the Pr. 1 setting is changed, frequency higher than the Pr. 1 setting can not be set by
When performing a high speed operation at 120 Hz or more, setting of Pr. 18 High speed maximum frequency is necessary.
(Refer to Chapter 4 of the Instruction Manual (Applied).)

\triangle CAUTION

4. If the Pr. 2 setting is higher than the Pr. 13 Starting frequency value, note that the motor will run at the set frequency according to the acceleration time setting by merely switching the start signal on, without entry of the command frequency.

4.3.6 Change acceleration and deceleration time (Pr. 7, Pr. 8)

Set in Pr. 7 Acceleration time a larger value for a slower speed increase and a smaller value for a faster speed increase.
Set in Pr. 8 Deceleration time a larger value for a slower speed decrease and a smaller value for a faster speed decrease.

Parameter Number	Name	Initial Value		Setting Range	Description
$\mathbf{7}$		7.5 K or lower	5 s		Set the motor acceleration time.
		11 K or higher	15 s		
$\mathbf{8}$	Set the motor deceleration time.				

* Depends on the Pr. 21 Acceleration/deceleration time increments setting. The initial value for the setting range is " 0 to 3600 s" and setting increments is "0.1s".
Changing example Change the Pr. 7 Acceleration time setting from " 5 s " to "10s".

1. Screen at power-ON

The monitor display appears.
2. Press $\frac{\mathrm{PU}}{\mathrm{EXI}}$ to choose the PU operation mode.
3. Press (MODE to choose the parameter setting mode.

4.Turn \bigcirc until $\wp . \quad \Pi_{1}($ Pr. 7$)$ appears.
5.Press SET to read the currently set value. "与に"(initial value) appears.
6. Turn \bigcirc to change it to the set value "

7 .Press set to set.

- By turning \bigcirc, you can read another parameter.
- Press SET to show the setting again.
- Press (SET) twice to show the next parameter.

4.3.7 Selection of the start command and frequency command locations (Pr. 79)

Select the start command location and frequency command location.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Parameter Number \& Name \& Initial Value \& Setting Range \& \multicolumn{2}{|c|}{Description} \& \begin{tabular}{l}
LED Indication \\
巨: Off \\
巨: On
\end{tabular} \\
\hline \multirow{11}{*}{79} \& \multirow{11}{*}{Operation mode selection} \& \multirow{11}{*}{0} \& 0 \& \multicolumn{2}{|l|}{\begin{tabular}{l}
Use External/PU switchover mode (press \(\frac{\mathrm{PU}}{\mathrm{EXT}}\) to switch between the PU and External operation mode. (Refer to page 83)) \\
At power on, the inverter is in External operation mode.
\end{tabular}} \& \begin{tabular}{l}
PU operation mode
\(\square\) \\
External operation mode \\
EXT \\
NET operation mode
\(\square\)
\end{tabular} \\
\hline \& \& \& 1 \& \multicolumn{2}{|l|}{Fixed to PU operation mode} \& PU operation mode PU-XTNET \\
\hline \& \& \& 2 \& Fixed to External operation Operation can be performe external and NET operation \& ode by switching between the mode. \& \begin{tabular}{l}
External operation mode
\(\square\) \\
NET operation mode

\end{tabular}

\hline \& \& \& \& External/PU combined ope \& ion mode 1 \&

\hline \& \& \& \& Frequency command \& Start command \&

\hline \& \& \& 3 \& PU (FR-DU07/FR-PU04/ FR-PU07) setting or external signal input (multispeed setting, across terminals 4-5 (valid when AU signal turns on)). *1 \& External signal input (terminal STF, STR) \& External/PU combined operation mode

\hline \& \& \& \& External/PU combined opera \& ion mode 2 \& ,

\hline \& \& \& \& Frequency command \& Start command \&

\hline \& \& \& 4 \& External signal input (Terminal 2, 4, 1, JOG, multi-speed selection, etc.) \& Input from the PU (FR-DU07/FR-PU04/FR-PU07)
(FWD, REV) \&

\hline \& \& \& 6 \& | Switchover mode |
| :--- |
| Switch among PU operatio NET operation while keeping | \& , external operation, and the same operating status. \& PU operation mode

\hline \& \& \& 7 \& | External operation mode (PU X12 signal ON *2 Operation mode can be mode. |
| :--- |
| (output stop during extern |
| X12 signal OFF *2 |
| Operation mode can not operation mode. | \& | operation interlock) |
| :--- |
| switched to PU operation |
| operation) |
| be switched to the PU | \& | External operation mode |
| :--- |
| NET operation mode |

\hline
\end{tabular}

*1 The priorities of the frequency commands when Pr. $79=$ " 3 " are "Multi-speed operation (RL/RM/RH/REX) > PID control (X14) > terminal 4 analog input (AU) > digital input from the operation panel".
*2 For the terminal used for the X12 signal (PU operation interlock signal) input, set "12" in Pr. 178 to Pr. 189 (input terminal function selection) to assign functions.
For Pr. 178 to Pr. 189, refer to Chapter 4 of the Instruction Manual (Applied).
When the X12 signal is not assigned, function of the MRS signal switches from MRS (output stop) to PU operation interlock signal.

4.3.8 Large starting torque and low speed torque are necessary (Advanced magnetic flux vector control, Real sensorless vector control) (Pr. 71, Pr. 80, Pr. 81, Pr. 800)
 Magnetic flux Sensorless

Advanced magnetic flux vector control can be selected by setting the capacity, poles and type of the motor used in Pr. 80 and Pr. 81. Real sensorless vector control can be selected for applications requiring high accuracy and fast response control. Perform offline auto tuning and online auto tuning when using Real sensorless vector control.

- What is Advanced magnetic flux vector control?

The low speed torque can be improved by providing voltage compensation to flow a motor current which meets the load torque. Output frequency compensation (slip compensation) is made so that the motor actual speed approximates a speed command value. Effective when load fluctuates drastically, etc.
Low-speed torque is improved as compared to V/F control. In addition, speed accuracy is improved when load is applied.

- What is Real sensorless vector control?

This function enables vector control with a general-purpose motor without encoder. Low speed torque and speed accuracy are improved as compared to Advanced magnetic flux vector control. Always perform offline auto tuning and online auto tuning when using Real sensorless vector control.
Real sensorless vector control is suitable for the following applications.

- To minimize the speed fluctuation even at a severe load fluctuation
- To generate low speed torque
- To prevent machine from damage due to too large torque (torque limit)
- To perform torque control

Parameter Number	Name	Initial Value	Setting Range	Description	
71	Applied motor	0	$\begin{gathered} 0 \text { to } 8,13 \text { to } 18,30,33,34 \text {, } \\ 40,43,44,50,53,54 \end{gathered}$	By selecting a standard motor or constanttorque motor, thermal characteristic and motor constants of each motor are set.	
80	Motor capacity	9999	0.4 to 55 kW	Set the applied motor capacity.	
	Motor capacity		9999	V/F control	
81	Number of motor poles	9999	2, 4, 6, 8, 10	Set the number of motor poles.	
			12, 14, 16, 18, 20	X18 signal-ON:V/F control *	Set 10 + number of motor poles.
			9999	V/F control	
800	Control method selection	20	0 to 5	Vector control (Refer to page 66)	
			9	Vector control test operation	
			10	Speed control	Real sensorless vector control
			11	Torque control	
			12	MC signal-ON:torque MC signal-OFF:speed *	
			20	V/F control (Advanced magnetic flux vector control)	

* Use Pr. 178 to Pr. 189 to assign the terminals used for the X18 and MC signal. (Refer to Chapter 4 of the Instruction Manual (Applied).)

POINT

If the following conditions are not satisfied, select V/F control since malfunction such as insufficient torque and uneven rotation may occur.

- The motor capacity should be equal to or one rank lower than the inverter capacity.

Motor to be used is either Mitsubishi standard motor (SF-JR 3.7kW or higher), high efficiency motor (SF-HR 3.7kW or higher) or Mitsubishi constant-torque motor (SF-JRCA 4P, SF-HRCA 3.7 kW or more). When using a motor other than the above (other manufacturer's motor), perform offline auto tuning without fail. (Advanced magnetic flux vector control) When performing Real sensorless vector control, offline auto tuning are necessary even when Mitsubishi motor is used. Single-motor operation (one motor run by one inverter) should be performed.

- The wiring length from inverter to motor should be within 30 m . (Perform offline auto tuning in the state where actual wiring work is performed when the wiring length exceeds 30 m .)

CAUTION

- Uneven rotation slightly increases as compared to the V/F control. (It is not suitable for machines such as grinding machine and wrapping machine which requires less uneven rotation at low speed.)
- Changing the terminal assignment using Pr. 178 to Pr. 189 (input terminal function selection) may affect the other functions. Please make setting after confirming the function of each terminal.
When Advanced magnetic flux vector control is performed with a surge voltage suppression filter (FR-ASF-H) connected, output torque may decrease.
Do not perform Real sensorless vector control with a surge voltage suppression filter (FR-ASF-H) connected.
<Selection method of Advanced magnetic flux vector control>

Perform secure wiring. (Refer to page 12.)

Set the motor. (Pr. 71) (Refer to page 63.)

Motor		Pr. 71 Setting *1	Remarks
Mitsubishi standard motor Mitsubishi high efficiency motor	SF-JR	0 (initial value)	
	SF-HR	40	
	Others	3	Offline auto tuning is necessary.*2
Mitsubishi constanttorque motor	SF-JRCA 4P	1	
	SF-HRCA	50	
	Others (SF-JRC, etc.)	13	Offline auto tuning is necessary. *2
Other manufacturer's standard motor	-	3	Offline auto tuning is necessary. *2
Other manufacturer's constant-torque motor	-	13	Offline auto tuning is necessary. *2

*1 For other settings of Pr. 71, refer to Chapter 4 of the Instruction Manual (Applied).
*2 Refer to page 71 for offline auto tuning.

Set the motor capacity and the number of motor poles according as required.
(Pr. 80, Pr. 81) (Refer to page 63.)

】
Set the motor capacity (kW) in Pr. 80 Motor capacity and set the number of motor poles (number of poles) in Pr. 81 Number of motor poles. (V/F control is performed when the setting is "9999" (initial value).
Set the run command. (Refer to page 83.)

Select the start command and speed command.
(1) Start command

1) Operation panel: Setting by pressing FWD REV of the operation panel
2) External command: Setting by forward rotation or reverse rotation command (terminal STF or STR)
(2)Speed command
3) Operation panel: Setting by pressing
 of the operation panel
4) External analog command (terminal 2 or 4):

Give a speed command using the analog signal input to terminal 2 (or terminal 4).
3) Multi-speed command:

The external signals ($\mathrm{RH}, \mathrm{RM}, \mathrm{RL}$) may also be used to give speed command.

Test run

As required

Perform offline auto tuning. (Pr.96) (refer to page 71).
Select online auto tuning. (Pr.95) (refer to page 76).

REMARKS

When higher accuracy operation is necessary, set Real sensorless vector control after performing offline auto tuning and select Real sensorless vector control.
Use Pr. 89 to adjust the motor speed fluctuation at load fluctuation. (Refer to Chapter 4 of the Instruction Manual (Applied).)
<Selection method of Real sensorless vector control (speed control) >

- Speed control is exercised to match the speed command and actual motor speed.

= CAUTION

- Make sure to perform offline auto tuning before performing Real sensorless vector control.
- Speed command setting range is 0 to 120 Hz for Real sensorless vector control.
- The carrier frequencies are selectable from among $2 k, 6 k, 10 k, 14 k H z$ for Real sensorless vector control.
- Torque control can not be performed in the low speed (approx. 10 Hz or less) regeneration range and with light load at low speed (approx. 20% or less of rated torque at approx. 5 Hz or less). Choose vector control.
- Performing pre-excitation (LX signal and X13 signal) under torque control may start the motor running at a low speed even when the start command (STF or STR) is not input. The motor may run also at a low speed when the speed limit value $=0$ with a start command input. Perform pre-excitation after making sure that there will be no problem in safety if the motor runs.
- Do not switch between the STF (forward rotation command) and STR (reverse rotation command) during operation under torque control. Overcurrent trip (E.OCD) or opposite rotation deceleration fault (E.11) occurs.
- When the inverter is likely to start during motor coasting under Real sensorless vector control, set to make frequency search of automatic restart after instantaneous power failure valid (Pr. $57 \neq$ "9999", Pr. $162=$ "10").
Enough torque may not be generated in the ultra-low speed range less than approx. 2 Hz when performing Real sensorless vector control.
The guideline of speed control range is as shown below.
Driving: $\quad 1: 200(2,4,6$ poles) Can be used at 0.3 Hz or more at rated 60 Hz
1:30 (8,10 poles) Can be used at 2 Hz or more at rated 60 Hz
Regeneration:1:12 (2 to 10 poles) Can be used at 5 Hz or more at rated 60 Hz

4.3.9 Higher accuracy operation using a motor with encoder (Vector control) (Pr.71, Pr.80, Pr.81, Pr.359, Pr.369, Pr.800)
 \qquad

Full-scale vector control can be performed fitting the FR-A7AP/FR-A7AL (option) and using a motor with encoder. Fast response/high accuracy speed control (zero speed control, servo lock), torque control, and position control can be performed.

- What is vector control?

Excellent control characteristics when compared to V/F control and other control techniques, achieving the control characteristics equal to those of DC machines.
It is suitable for applications below.

- To minimize the speed fluctuation even at a severe load fluctuation
- To generate low speed torque
- To prevent machine from damage due to too large torque (torque limit)
- To perform torque control or position control
- Servo-lock torque control which generates a torque at zero speed (i.e. status of motor shaft = stopped)

Parameter Number	Name	Initial Value	Setting Range	Description	
71	Applied motor	0	$\begin{gathered} \hline 0 \text { to } 8,13 \text { to } 18,30, \\ 33,34,40,43,44, \\ 50,53,54 \end{gathered}$	By selecting a standard motor or constant-torque motor, thermal characteristic and motor constants of each motor are set.	
80	Motor capacity	9999	0.4 to 55 kW	Set the applied motor capacity.	
			9999	V/F control	
81	Number of motor poles	9999	2, 4, 6, 8, 10	Set the number of motor poles.	
			12, 14, 16, 18, 20	X18 signal-ON:V/F control *	Set $10+$ number of motor poles.
			9999	V/F control	
359	Encoder rotation direction	1	0		
			1	Counter clockwise direction as viewed from A is forward rotation	
369	Number of encoder pulses	1024	0 to 4096	Set the number of pulses of the encoder. Set the number of pulses before multiplied by four.	
800	Control method selection	20	0	Speed control	Vector control
			1	Torque control	
			2	MC signal-ON:torque MC signal-OFF:speed *	
			3	Position control	
			4	MC signal-ON:position MC signal-OFF:speed *	
			5	MC signal-ON:torque MC signal-OFF:position *	
			9	Vector control test operation (Refer to Chapter 4 of the Instruction Manual (Applied).)	
			10 to 12	Real sensorless vector control (Refer to page 64)	
			20	V/F control (Advanced magnetic flux vector control)	

[^6]
POINT

If the conditions below are not satisfied, malfunction such as insufficient torque and uneven rotation may occur.

- The motor capacity should be equal to or one rank lower than the inverter capacity.
- Motor to be used is any of Mitsubishi standard motor with encoder (SF-JR 3.7kW or higher), high efficiency motor with encoder (SF-HR 3.7kW or higher) or Mitsubishi constant torque motor with encoder (SF-JRCA 4P, SF-HRCA 3.7 kW or higher) or vector control dedicated motor (SF-V5RU (1500r/min series)). When using a motor other than the above (other manufacturer's motor), perform offline auto tuning without fail.
Single-motor operation (one motor run by one inverter) should be performed.
Wiring length from inverter to motor should be within 30 m . (Perform offline auto tuning in the state where wiring work is performed when the wiring length exceeds 30 m .)

CAUTION

Changing the terminal assignment using Pr. 178 to Pr. 189 (input terminal function selection) may affect the other functions. Make setting after confirming the function of each terminal.
Do not perform vector control with a surge voltage suppression filter (FR-ASF-H/FR-BMF-H) connected.
<Selection method of speed control>
| Speed control is exercised to match the speed command and actual motor speed.

Perform secure wiring. (Refer to page 31.)
Mount the FR-A7AP/FR-A7AL (option).
Set the motor and encoder. (Pr. 71, Pr. 359, Pr. 369)

Set Pr. 71 Applied motor, Pr. 359 Encoder rotation direction and Pr. 369 Number of encoder pulses according to the motor and encoder used. (Refer to page 33.)

Set the motor capacity and the number of motor poles
(Pr. 80, Pr. 81) (Refer to page 66.)

\downarrow
Set the motor capacity (kW) in Pr. 80 Motor capacity and set the number of motor poles (number of poles) in Pr. 81 Number of motor poles. (V/F control is performed when the setting is "9999" (initial value).)
Select a control method. (Refer to page 66.)
Make speed control valid by selecting "0" (speed control), "2" (speedtorque switchover), or "4" (speed-position switchover) for Pr. 800.

Set the run command. (Refer to page 85.)
Select the start command and speed command.
(1) Start command
1)Operation panel: Setting by pressing FWD REV of the operation panel
2) External command: Setting by forward rotation or reverse rotation command (terminal STF or STR)
(2)Speed command
1)Operation panel: Setting by pressing
 of the operation panel
2) External analog command (terminal 2 or 4):

Give a speed command using the analog signal input to terminal 2 (or terminal 4).
3)Multi-speed command:

The external signals ($\mathrm{RH}, \mathrm{RM}, \mathrm{RL}$) may also be used to give speed command.

Set the torque limit. (Pr. 810)
(Refer to Chapter 4 of the Instruction Manual (Applied).)

Test run

As required

Perform offline auto tuning. (Pr. 96) (refer to page 71).
Select online auto tuning. (Pr. 95) (refer to page 76).
Easy gain tuning (refer to page 77)
Manual input speed control gain adjustment (refer to page 79)

CAUTION

Speed command setting range is 0 to 120 Hz for vector control.
The carrier frequencies are selectable among $2 \mathrm{k}, 6 \mathrm{k}, 10 \mathrm{k}$, and 14 kHz for vector control.

<Selection method of torque control>

- Torque control is exercised to develop torque as set in the torque command.
- The motor speed becomes constant when the motor output torque and load torque are balanced.

For torque control, therefore, the speed is determined by the load.

- For torque control, the motor gains speed as the motor output torque becomes greater than the motor load.

To prevent overspeed, set the speed limit value so that the motor speed does not increase too high.
(Speed control is exercised during speed limit and torque control is disabled.)

- When speed limit is not set, the speed limit value setting is regarded as OHz to disable torque control.

Perform secure wiring. (Refer to page 31.)
Mount the FR-A7AP/FR-A7AL (option).
Set the motor and encoder. (Pr. 71, Pr. 359, Pr. 369)

\square
Set Pr. 71 Applied motor, Pr. 359 Encoder rotation direction and Pr. 369 Number of encoder pulses according to the motor and encoder used. (Refer to page 33.)
Set the motor capacity and the number of motor poles. (Pr. 80, Pr. 81)
(Refer to page 66.)

\square
Set the motor capacity (kW) in Pr. 80 Motor capacity and set the number of motor poles in Pr. 81 Number of motor poles.
(V/F control is performed when the setting is "9999" (initial value).)
Select a control method. (Refer to page 66.)

\pm
Set either "1" (torque control), "2" (speed-torque switchover) or "5" (position-torque switchover) in Pr. 800 and make torque control valid.

Set the torque command. (Pr. 804)
(Refer to Chapter 4 of the Instruction Manual (Applied).)

Set the speed limit. (Pr. 807)
(Refer to Chapter 4 of the Instruction Manual (Applied).)
-

Test run

As required

Perform offline auto tuning. (Pr. 96) (refer to page 71).

- Select online auto tuning. (Pr. 95) (refer to page 76).
- Manual input torque control gain adjustment (refer to Chapter 4 of the Instruction Manual (Applied))

The carrier frequencies are selectable among $2 \mathrm{k}, 6 \mathrm{k}, 10 \mathrm{k}$, and 14 kHz for vector control.

<Selection method of position control>

- In the position control, the speed command is calculated so that the difference between command pulse (or parameter setting) and the number of feedback pulses from the encoder is zero to run the motor.
- This inverter can perform simple position feed by contact input, position control by inverter simple pulse input, and position control by FR-A7AL pulse train input.

Perform secure wiring. (Refer to page 32.)
 Mount the FR-A7AP/FR-A7AL (option).
 Set the motor and encoder. (Pr. 71, Pr. 359, Pr. 369)

Set Pr. 71 Applied motor, Pr. 359 Encoder rotation direction and Pr. 369 Number of encoder pulses according to the motor and encoder used.
(Refer to page 33.)
Set the motor capacity and the number of motor poles.
(Pr. 80, Pr. 81) (Refer to page 66.)
Set the motor capacity (kW) in Pr. 80 Motor capacity and set the number of motor poles (number of poles) in Pr. 81 Number of motor poles. (V/F control is performed when the setting is "9999" (initial value).)
Select a control method. (Refer to page 66.)

Make speed control valid by selecting " 3 " (position control) "4" (speedposition switchover) or "5" (position-torque switchover) for Pr. 800.

Selection of position command source. (Pr. 419)

\downarrowPosition command by contact input
Set "0" (initial value) in Pr. 419.
Setting of parameter for position feed (Pr. 465 to Pr. 494).
(Refer to Chapter 4 of the Instruction Manual (Applied).)

Position command by inverter pulse train input Set "2" in Pr. 419.
Selection of command pulse form.
(Pr. 428)
(Refer to Chapter 4 of the Instruction Manual (Applied).)

Test run

As required

- Set the electronic gear. (refer to Chapter 4 of the Instruction Manual (Applied))
- Setting of positioning adjustment parameter (refer to Chapter 4 of the Instruction Manual (Applied))
Gain adjustment of position control (refer to Chapter 4 of the Instruction Manual (Applied))

CAUTION

The carrier frequencies are selectable among $2 \mathrm{k}, 6 \mathrm{k}, 10 \mathrm{k}$, and 14 kHz for vector control.

4.3.10 Exhibiting the best performance of the motor performance (offline auto tuning) (Pr. 71, Pr. 83, Pr. 84, Pr. 96) Magnetic flux Sensorless Vector

The motor performance can be maximized with offline auto tuning.

- What is offline auto tuning?

When performing Advanced magnetic flux vector control, Real sensorless vector control or vector control, the motor can be run with the optimum operating characteristics by automatically measuring the motor constants (offline auto tuning) even when each motor constants differs, other manufacturer's motor is used, or the wiring length is long. (30 m or longer as reference)

Parameter Number	Name	Initial Value	Setting Range	Description
71	Applied motor	0	$\begin{gathered} \hline 0 \text { to } 8,13 \text { to } 18, \\ 30,33,34,40, \\ 43,44,50,53,54 \\ \hline \end{gathered}$	By selecting a standard motor or constant-torque motor, thermal characteristic and motor constants of each motor are set.
83	Rated motor voltage	200/400V *	0 to 1000V	Set the rated motor voltage(V). * The initial value differs according to the voltage level. (200V/400V)
84	Rated motor frequency	60 Hz	10 to 120 Hz	Set the rated motor frequency (Hz).
96	Auto tuning setting/ status	0	0	Offline auto tuning is not performed
			1	Offline auto tuning is performed without motor running
			101	Offline auto tuning is performed with motor running

POINT

- This function is valid only when a value other than "9999" is set in Pr. 80 and Pr. 81 and Advanced magnetic flux vector control, Real sensorless vector control or vector control is selected.
You can copy the offline auto tuning data (motor constants) to another inverter with the PU (FR-DU07/FR-PU07).
Even when motors (other manufacturer's motor, SF-JRC, etc.) other than Mitsubishi standard motor (SF-JR 3.7 kW or higher), high efficiency motor (SF-HR 3.7kW or higher), Mitsubishi constant-torque motor (SF-JRCA 4P, SF-HRCA 3.7 kW or higher) and vector control dedicated motor (SF-V5RU (1500r/min series)) are used or the wiring length is long (30 m or longer as reference), using the offline auto tuning function runs the motor with the optimum operating characteristics.
Tuning is enabled even when a load is connected to the motor. (As the load is lighter, tuning accuracy is higher. Tuning accuracy does not change even if the inertia is large.)
For the offline auto tuning, you can select either the motor non-rotation mode (Pr. $96=$ "1") or rotation mode (Pr. 96 = "101").
- The rotation mode has higher tuning accuracy than the non-rotation mode.
- Reading/writing/copy of motor constants tuned by offline auto tuning are enabled.
- The offline auto tuning status can be monitored with the PU (FR-DU07/FR-PU07/FR-PU04).
- Do not use an inverter with a surge voltage suppression filter (FR-ASF-H) connected between the inverter and motor.

(1) Before performing offline auto tuning

Check the following before performing offline auto tuning.

- Make sure Advanced magnetic flux vector control (Pr. 80, Pr. 81), Real sensorless vector control or vector control (Pr. 800) is selected. (Refer to page 63)
- A motor should be connected. Note that the motor should be at a stop at a tuning start.
- The motor capacity should be equal to or one rank lower than the inverter capacity.
- Motors such as high-slip motor, high-speed motor and special motor cannot be tuned. (The maximum frequency is 120 Hz .)
Even if tuning is performed without motor running (Pr. 96 Auto tuning setting/status $=$ " $1 "$), the motor may run slightly. Therefore, fix the motor securely with a mechanical brake, or before tuning, make sure that there will be no problem in safety if the motor runs. (Caution is required especially in vertical lift applications). Note that if the motor runs slightly, tuning performance is unaffected.
Note the following when selecting offline auto tuning performed with motor running (Pr. 96 Auto tuning setting/status $=$ "101").
Torque is not enough during tuning.
The motor may be run at nearly its rated speed.
The mechanical brake is open.
No external force is applied to rotate the motor.
Offline auto tuning will not be performed properly if it is performed with a surge voltage suppression filter (FR-ASFH) connected between the inverter and motor. Remove it before starting tuning.

When exercising vector control, use the encoder that is coupled directly to the motor shaft without looseness. Speed ratio should be 1:1.

(2) Setting

1) Select the Advanced magnetic flux vector control, Real sensorless vector control or vector control.
2) Set "1" or "101" in Pr. 96 Auto tuning setting/status .
. When the setting is "1"
Tuning is performed without motor running.
It takes approximately 25 to 120 s * until tuning is completed.
(Excitation noise is produced during tuning.)
*Tuning time differs according to the inverter capacity and motor type.

- When the setting is "101" Tuning is performed with motor running.

It takes approximately 40 s until tuning is completed.
The motor runs at nearly its rated frequency.
3) Set the rated motor current (initial value is rated inverter current) in Pr. 9 Electronic thermal O / L relay.
4) Set the rated voltage of motor (initial value is $200 \mathrm{~V} / 400 \mathrm{~V}$) in Pr. 83 Rated motor voltage and rated frequency of motor (initial value is 60 Hz) in Pr. 84 Rated motor frequency .
(For a Japanese standard motor, etc. which has both 50 Hz and 60 Hz rated values, set $200 \mathrm{~V} / 60 \mathrm{~Hz}$ or $400 \mathrm{~V} / 60 \mathrm{~Hz}$).) For vector control dedicated motor SF-V5RU1 / V5RU3 / V5RU4, set as the following table.

	Pr. 83 Setting	Pr. 84 Setting
SF-V5RU1-30kW or less	160 V	
SF-V5RU1-37kW	170 V	33.33 Hz
SF-V5RU3-22kW or less	160 V	
SF-V5RU3-30kW	170 V	16.67 Hz
SF-V5RU4-3.7kW, 7.5 kW	150 V	

REMARKS

When using the vector control dedicated motor SF-V5RU (1500r/min series) or SF-THY, setting 33 and 34 in Pr. 71 selects internal constants appropriate for dedicated motors. Therefore, Pr. 83 and Pr. 84 settings are unnecessary.

- Perform auto tuning for SF-V5RU (except for $1500 \mathrm{r} / \mathrm{min}$ series) with setting 13 or 14 in Pr. 71 (For perform auto tuning, set Pr. 83 and Pr. 84)
- When Pr. 11 DC injection brake operation time $=" 0$ " or Pr. 12 DC injection brake operation voltage $=" 0, "$ offline auto tuning is performed at the initial setting of Pr. 11 or Pr. 12.
- When the positioning control is selected (Pr. $800=" 3$ " or " 5 " (when MC signal is OFF)), offline auto tuning is not performed.

5) Set Pr. 71 Applied motor according to the motor used.

Motor		Pr. 71 Setting *
$\begin{array}{c}\text { Mitsubishi standard motor } \\ \text { Mitsubishi high efficiency motor }\end{array}$	SF-JR	3
	SF-HR	43
	Others	3
Mitsubishi constant-torque motor	SF-JRCA 4P	13
	SF-HRCA	53
	Others (SF-JRC, etc.)	13
Vector control dedicated motor	$\begin{array}{l}\text { SF-V5RU (1500r/min series) } \\ \text { SF-THY }\end{array}$	SF-V5RU (except for 1500r/min series)

[^7]
(3) Execution of tuning

- CAUTION

Before performing tuning, check the monitor display of the operation panel (FR-DU07) or parameter unit (FR-PU04/FRPU07) if the inverter is in the state ready for tuning. (Refer to 2) below) When the start command is turned ON under V/F control, the motor starts.
1)When performing PU operation, press FWD REV of the operation panel.

For external operation, turn ON the start command (STF signal or STR signal). Tuning starts.

REMARKS

The offline auto tuning starts when the inverter start conditions, including the ON status of the MRS signal, are met.
To force tuning to end, use the MRS or RES signal or press ($\frac{\text { SOP }}{\text { RISEI) }}$) of the operation panel.
(Turning the start signal (STF signal or STR signal) off also ends tuning.)
During offline auto tuning, only the following I/O signals are valid: (initial value)

- Input signals <valid signal> STOP, OH, MRS, RT, CS, RES, STF, STR
- Output terminal RUN, OL, IPF, FM, AM, A1B1C1

Note that the progress status of offline auto tuning is output in fifteen steps from AM and FM when speed and output frequency are selected.
Do not perform ON/OFF switching of the second function selection signal (RT) during execution of offline auto tuning. Auto tuning is not executed properly.
Setting offline auto tuning (Pr. 96 Auto tuning setting/status = "1 or 101") will make pre-excitation invalid.

CAUTION

- When selecting offline auto tuning performed with motor running (Pr. 96 Auto tuning setting/status $=$ "101"), caution must be taken since the motor runs.
Since the RUN signal turns on when tuning is started, caution is required especially when a sequence which releases a mechanical brake by the RUN signal has been designed.
When executing offline auto tuning, input the run command after switching on the main circuit power ($R / L 1, \mathrm{~S} / \mathrm{L} 2, \mathrm{~T} / \mathrm{L} 3$) of the inverter.
. When Pr. $79=$ " $7, "$ turn ON the X 12 signal and select the PU operation mode to perform tuning.
2)Monitor is displayed on the operation panel (FR-DU07) and parameter unit (FR-PU07/FR-PU04) during tuning as below.

	Parameter Unit(FR-PU07/FR-PU04) Display		Operation Panel (FR-DU07) Display	
Pr. 96 setting	1	101	1	101
(1) Setting	1 - Stop	101 $---S T O P ~ P U ~$		
(2) Tuning in progress			-	
(3) Normal end	IIIIIIIIIIIIIIIIIIII TUNE COMLETITIO ST STF STOP PU	IIIIIIIIIIIIIIIIIIIII TOU CUNE CNMLEETIO STF STOP PU		
(4) Error end (when the inverter protective function is activated)	IIIIIIIIIIIIIIIIIIIIT TUNE 9 ERROR STF STOP PU			

- Reference: Offline auto tuning time (when the initial value is set)

Offline Auto Tuning Setting	Time
Non-rotation mode (Pr. $96=" 1 ")$	Approximately 25 to 120s (Tuning time differs according to the inverter capacity and motor type.)
Rotation mode (Pr. $96=" 101 "$)	Approximately 40s (Offline auto tuning time varies with the acceleration and deceleration time settings as indicated below. Offline auto tuning time $=$ acceleration time + deceleration time + approx. 30s)

3)When offline auto tuning ends, press
of the operation panel during PU operation. For external operation, turn OFF the start signal (STF signal or STR signal).
This operation resets the offline auto tuning and the PU's monitor display returns to the normal indication.
(Without this operation, next operation cannot be started.)

REMARKS

Do not change the Pr. 96 setting after completion of tuning (3 or 103).
If the Pr. 96 setting is changed, tuning data is invalid.
If the Pr. 96 setting is changed, tuning must be performed again.
4)If offline auto tuning ended in error (see the table below), motor constants are not set.

Perform an inverter reset and restart tuning.

Error Display	Error Cause	Remedy
8	Forced end	Set "1" or "101" in Pr. 96 and perform tuning again.
9	Inverter protective function operation	Make setting again.
91	Current limit (stall prevention) function was activated.	Increase acceleration/deceleration time. Set "1" in Pr. 156.
92	Converter output voltage reached 75\% of rated value.	Check for fluctuation of power supply voltage.
93	Calculation error A motor is not connected.	Check the motor wiring and make setting again. Set the rated current of the motor in Pr.9.

5)When tuning is ended forcibly by pressing
or turning off the start signal (STF or STR) during tuning, offline auto tuning does not end properly. (The motor constants have not been set.)
Perform an inverter reset and restart tuning.
6)When using the motor corresponding to the following specifications and conditions, reset Pr. 9 Electronic thermal O / L relay as below after tuning is completed.
a) When the rated power specifications of the motor is $200 / 220 \mathrm{~V}(400 / 440 \mathrm{~V}) 60 \mathrm{~Hz}$, set 1.1 times rated motor current value in Pr. 9.
b) When performing motor protection from overheat using a PTC thermistor or motor with temperature detector such as Klixon, set " 0 " (motor overheat protection by the inverter is invalid) in Pr. 9 .

CAUTION

- The motor constants measured once in the offline auto tuning are stored as parameters and their data are held until the offline auto tuning is performed again.
- An instantaneous power failure occurring during tuning will result in a tuning error.

After power is restored, the inverter goes into the normal operation mode. Therefore, when STF (STR) signal is on, the motor runs in the forward (reverse) rotation.
Any alarm occurs during tuning is handled as in the ordinary mode. Note that if a fault retry has been set, retry is ignored.
The set frequency monitor displayed during the offline auto tuning is 0 Hz .

\triangle CAUTION

Note that the motor may start running suddenly.
\$. When the offline auto tuning is used in vertical lift application, e.g. a lifter, it may drop due to insufficient torque.

4.3.11 High accuracy operation unaffected by the motor temperature (online auto tuning) (Pr. 95) Magnetic flux Sensorless Vector

 When online auto tuning is selected under Advanced magnetic flux vector control, Real sensorless vector control or vector control, excellent torque accuracy is provided by temperature compensation even if the secondary resistance value of the motor varies with the rise of the motor temperature.| Parameter
 Number | Name | Initial
 Value | Setting Range | Description |
| :---: | :--- | :---: | :---: | :--- |
| 95 | Online auto tuning
 selection | | 0 | 1 |
| | | | Online auto tuning is not performed | |
| | | Start-time online auto tuning | | |

(1) Start-time online auto tuning (setting is "1")

By quickly tuning the motor constants at a start, high accuracy operation unaffected by the motor temperature and stable operation with high torque down to ultra low speed can be performed.

- Make sure Advanced magnetic flux vector control (Pr. 80, Pr. 81), Real sensorless vector control or vector control (Pr. 800) is selected. (Refer to page 63.)
Before performing online auto tuning, perform offline auto tuning without fail.

<Operation method>

1) Check that "3" or "103" (offline auto tuning completion) is set in Pr. 96 Auto tuning setting/status.
2) Set "1" (start-time online auto tuning) in Pr. 95 Online auto tuning selection.

Online auto tuning is performed from the next starting.
3) When performing PU operation, press FWD REV of the operation panel.

For external operation, turn ON the run command (STF signal or STR signal).

CAUTION

- For using start-time online auto tuning in elevator, examine the utilization of a brake sequence for the brake opening timing at a start. Though the tuning ends in about a maximum of 500 ms after a start, torque is not provided fully during that period. Therefore, note that there may be a possibility of drop due to gravity.
It is recommended to perform tuning using a start time tuning signal (X28)。 (Refer to Chapter 4 of 咱 the Instruction Manual (Applied).)
(2) Magnetic flux observer (normal tuning) (setting value is "2")

When exercising vector control using a motor with encoder, it is effective for torque accuracy improvement.
The current flowing in the motor and the inverter output voltage are used to estimate/observe the magnetic flux in the motor.
The magnetic flux of the motor is always (including during operation) detected with high accuracy so that an excellent characteristic is provided regardless of the change in the temperature of the secondary resistance.
Vector control (Pr. 80, Pr. 81, Pr. 800) should be selected. (Refer to page 75.)

CAUTION

- For the SF-V5RU, SF-JR (with encoder), SF-HR (with encoder), SF-JRCA (with encoder) or SF-HRCA (with encoder), it is not necessary to perform offline auto tuning to select adaptive magnetic flux observer. (Note that it is necessary to perform offline auto tuning for the wiring length resistance to be reflected on the control when the wiring length is long (30 m or longer as reference).

REMARKS

Online auto tuning does not operate if the MRS signal is input, if the preset speed is less than the Pr. 13 Starting frequency (V/F control or Advanced magnetic flux vector control), or if the starting conditions of the inverter are not satisfied, e.g. inverter error. Online auto tuning does not operate during deceleration or at a restart during DC brake operation.
Invalid for jog operation.
Automatic restart after instantaneous power failure overrides when automatic restart after instantaneous power failure is selected. (Start-time online auto tuning is not performed at frequency search.)
Perform online auto tuning at a stop with the X28 signal when using automatic restart after instantaneous power failure together.
(Refer to Chapter 4 of the Instruction Manual (Applied) for details.)
Zero current detection and output current detection are valid during online auto tuning.
The RUN signal is not output during online auto tuning. The RUN signal turns on at a start.
If the period from an inverter stop to a restart is within 4 s , start-time tuning is performed but the tuning results are not reflected.

4.3.12 To perform high accuracy/fast response operation (gain adjustment of Real sensorless vector control and vector control) (Pr. 818 to Pr. 821, Pr. 880)

```
Sensorless Vector 
```

The ratio of the load inertia to the motor inertia (load moment of inertia) is estimated in real time from the torque command and speed during motor operation by vector control. As optimum gain of speed control and position control are automatically set from the load inertia ratio and response level, time and effort of making gain adjustment are reduced. (Easy gain tuning)
When the load inertia ratio cannot be estimated due to load fluctuation or Real sensorless vector control is exercised, control gain is automatically set by manually inputting the load inertia ratio.
Make a manual input adjustment when vibration, noise or any other unfavorable phenomenon occurs due to large load inertia or gear backlash, for example, or when you want to exhibit the best performance that matches the machine.

Parameter Number	Name	Initial Value	Setting Range	Description
$\mathbf{8 1 8}$	Easy gain tuning response level setting	2	1 to 15	Set the response level. 1: Slow response to 15: Fast response
$\mathbf{8 1 9}$	Easy gain tuning selection	0	0	Without easy gain tuning
			With load estimation, with gain calculation (valid only during vector control)	
$\mathbf{8 2 0}$	Speed control P gain 1	60%	0 to 1000\%	With load (Pr. 880$)$ manual input, gain calculation
$\mathbf{8 2 1}$	Set the proportional gain for speed control. (Increasing the value improves trackability in response to a speed command change and reduces speed variation with disturbance.)			
time 1 control integral	0.333 s	0 to 20s	Set the integral time during speed control. (Decrease the value to shorten the time taken for returning to the original speed if speed variation with disturbance occurs.)	
$\mathbf{8 8 0}$	Load inertia ratio	7 times	0 to 200 times	Set the load inertia ratio to the motor.

(1) Easy gain tuning execution procedure (Pr. $819=$ "1" load inertia ratio automatic estimation)

Easy gain tuning (load inertia ratio automatic estimation) is valid only in the speed control or position control mode under vector control.
It is invalid under torque control, V/F control, Advanced magnetic flux vector control and Real sensorless vector control.

1) Set the response level using Pr. 818 Easy gain tuning response level setting.
Refer to the diagram on the right and set the response level.
Increasing the value will improve trackability to the command, but too high value will generate vibration. The relationship between the setting and response level are shown on the right.

2) Each control gain is automatically set from the load inertia ratio estimated during acceleration/deceleration operation and the Pr. 818 Easy gain tuning response level setting value.
Pr. 880 Load inertia ratio is used as the initial value of the load inertia ratio for tuning. Estimated value is set in Pr. 880 during tuning.
The load inertia ratio may not be estimated well, e.g. it takes a long time for estimation, if the following conditions are not satisfied.

- Time taken for acceleration/deceleration to reach $1500 \mathrm{r} / \mathrm{min}$ is 5 s or less.
- Speed is $150 \mathrm{r} / \mathrm{min}$ or more.
- Acceleration/deceleration torque is 10% or more of the rated torque.
- Abrupt disturbance is not applied during acceleration/deceleration.
- Load inertia ratio is approx. 30 times or less.

No gear backlash nor belt looseness is found.
3) Press FWD or REV to estimate the load inertia ratio or calculate gain any time. (The operation command for external operation is the STF or STR signal.)

(2) Easy gain tuning execution procedure ($\operatorname{Pr} .819=$ "2" load inertia manual input)

Easy gain tuning (load inertia ratio manual input) is valid only in the speed control mode under Real sensorless vector control or in the speed control or position control mode under vector control.

1) Set the load inertia ratio to the motor in Pr. 880 Load inertia ratio.
2) Set "2" (with easy gain tuning) in Pr. 819 Easy gain tuning selection. Then, Pr. 820 Speed control P gain 1 and Pr. 821 Speed control integral time 1 are automatically set by gain calculation.
Operation is performed in a gain adjusted status from the next operation.
3) Perform a test run and set the response level in Pr. 818 Easy gain tuning response level setting. Increasing the value will improve trackability to the command, but too high value will generate vibration. (When " 2 " (parameter write enabled during operation) is set in Pr. 77 Parameter write selection, response level adjustment can be made during operation.)

REMARKS

When "1 or 2 " is set in $\operatorname{Pr} .819$ and then returned the $\operatorname{Pr} .819$ setting to " 0 " after tuning is executed, tuning results which are set in each parameter remain unchanged.
When good tuning accuracy is not obtained after executing easy gain tuning due to disturbance and such, perform fine adjustment by manual input. Set "0" (without easy gain tuning) in Pr. 819.

(3) Parameters automatically set by easy gain tuning

The following table indicates the relationship between easy gain tuning function and gain adjustment parameter.

	Easy Gain Tuning Selection (Pr. 819) Setting		
	0	1	2
Load inertia ratio (Pr. 880)	Manual input	a) Inertia estimation result (RAM) by easy gain tuning is displayed. b) Set the value in the following cases: - Every hour after power-ON - When a value other than " 1 " is set in Pr. 819 - When vector control is changed to other control (V/F control etc.) using Pr. 800 c) Write is enabled only during a stop (manual input)	Manual input
Speed control P gain 1 (Pr. 820) Speed control integral time 1 (Pr. 821) Model speed control gain (Pr. 828) Position loop gain (Pr. 422)	Manual input	a) Tuning result (RAM) is displayed. b) Set the value in the following cases: - Every hour after power-on - When a value other than " 1 " is set in Pr. 819 - When vector control is changed to other control (V/F control etc.) using Pr. 800 c) Write (manual input) disabled	a) Gain is calculated when " 2 " is set in Pr. 819 and the result is set in the parameter. b) When the value is read, the tuning result (parameter setting value) is displayed. c) Write (manual input) disabled

CAUTION

[^8]
(4) Manual input speed control gain adjustment

- Make adjustment when any of such phenomena as unusual machine vibration/noise, low response level and overshoot has occurred.

- The response speed of a motor is equivalent to $120 \mathrm{rad} / \mathrm{s}$ when Pr. 820 Speed control P gain 1 = "60\% (initial setting)." Increasing the setting value improves the response level, but setting too large of a gain will produce vibration and/or unusual noise.
Decreasing the Pr. 821 Speed control integral time 1 shortens the return time taken at a speed change. However, a too short time will generate an overshoot.
- When there is load inertia, the actual speed gain is as given below.

Actual speed gain $=$ speed gain of motor without load $\times \frac{\mathrm{JM}}{\mathrm{JM}+\mathrm{JL}} \quad \begin{aligned} & \mathrm{JM} \text { : Inertia of the motor } \\ & \mathrm{JL}: \text { : Motor shaft-equivalent load inertia }\end{aligned}$

- Adjustment procedures are as below:
1)Check the conditions and simultaneously change the Pr. 820 value.
2)If you cannot make proper adjustment, change the Pr. 821 value and repeat step 1).

No.	Phenomenon/ Condition	Adjustment Method	
	Load inertia is large	Set the Pr. 820 and Pr. $82 I$ values a little higher.	
		Pr. 820	When a speed rise is slow, increase the value 10% by 10% until just before vibration/noise is produced, and set about 0.8 to 0.9 of that value.
If an overshoot occurs, double the value until an overshoot does not occur, and			
set about 0.8 to 0.9 of that value.			

REMARKS

When making manual input gain adjustment, set "0" (without easy gain tuning) (initial value) in Pr. 819 Easy gain tuning selection.

(5) When using a multi-pole motor (8 poles or more)

Specially when using a multi-pole motor with more than 8 poles under Real sensorless vector control or vector control, adjust Pr. 820 Speed control P gain 1 and Pr. 824 Torque control P gain 1 according to the motor referring to the following methods.

- For Pr. 820 Speed control P gain 1, increasing the setting value improves the response level, but a too large gain will produce vibration and/or unusual noise.
- For Pr. 824 Torque control P gain 1, note that a too low value will produce current ripples, causing the motor to generate sound synchronizing the cycle of current ripples.
Adjustment method

No.	Phenomenon/Condition	Adjustment Method
1	The motor rotation is unstable in the low speed range.	Set a higher value in Pr. 820 Speed control P gain 1 according to the motor inertia. Since the self inertia of a multi-pole motor tends to become large, make adjustment to improve the unstable phenomenon, then make fine adjustment in consideration of the response level using that setting as reference. In addition, when performing vector control with encoder, gain adjustment according to the inertia can be easily done using easy gain tuning (Pr. $819=1$).
2	Speed trackability is p	Set a higher value in Pr. 820 Speed control P gain 1. Increase the value 10% by 10% until just before vibration or unusual noise is produced, and set about 0.8 to 0.9 of that value. If you cannot make proper adjustment, increase the value of Pr. 821 Speed control integral time 1 double by double and make adjustment of Pr. 820 again.
3	Speed variation at the load fluctuation is large.	
4	Torque becomes insufficient or torque ripple occurs at starting or in the low speed range under Real sensorless vector control.	Set the speed control gain a little higher. (same as No. 1) If the problem still persists after gain adjustment, increase Pr. 13 Starting frequency or set the acceleration time shorter if the inverter is starting to avoid continuous operation in the ultra low speed range.
5	Unusual motor and machine vibration, noise or overcurrent occurs.	Set a lower value in Pr. 824 Torque control P gain 1. Decrease the value 10% by 10% until just before the phenomenon is improved, and set about 0.8 to 0.9 of that value.
6	Overcurrent or overspeed (E.OS) occurs at a start under Real sensorless vector control.	

(6) Troubleshooting (speed)

	Phenomenon	Cause		Countermeasures
1	Motor does not rotate. (Vector control)	(1) The motor wiring is wrong	(1) Wiring check Select V/F control (set "9999" in Pr. 80 or Pr. 81) and check the rotation direction of the motor. For the SF-V5RU (1500r/min series), set " 160 V (320V)" in Pr. 19 Base frequency voltage, and set " 50 Hz " in Pr. 3 Base frequency. When the forward rotation signal is input, the motor running in the counterclockwise direction as viewed from the motor shaft is normal. (If it runs in the clockwise direction, the phase sequence of the inverter output	
		(2) Encoder specifications (encoder specification selection switch FR-A7AP/FR-A7AL (option)) are wrong (3) The encoder wiring is wrong.	(2) Check the encoder specifications. Check the encoder specifications selection switch (FR-A7AP/FR-A7AL (option)) of differential/ complementary (3) Check that FWD is displayed when running the motor in the counter-clockwise direction from outside during a stop of the inverter with vector control setting. If REV is displayed, the encoder phase sequence is wrong. Perform the correct wiring or match the Pr. 359 Encoder rotation direction.	
			$\text { Pr. } 359$ Setting	Relationship between the Motor and Encoder
			0	Clockwise direction as viewed from A is forward rotation
			1 (Initial value)	Counter clockwise direction as viewed from A is forward rotation
		(4) The Pr. 369 Number of encoder pulses setting and the number of encoder used are different. (5) Encoder power specifications are wrong. Or, power is not input.	(4) The motor w smaller than the Pr. 369 N (5) Check the p encoder and	not run if the parameter setting is he number of encoder pulses used. Set mber of encoder pulses correctly. wer specifications ($5 \mathrm{~V} / 12 \mathrm{~V} / 15 \mathrm{~V} / 24 \mathrm{~V}$) of input the external power supply.
2	Motor does not run at correct speed. (Speed command does not match actual speed)	(1) The speed command from the command device is incorrect. The speed command is compounded with noise. (2) The speed command value does not match the inverterrecognized value. (3) The number of encoder pulses setting is incorrect.	(1) Check that a command de Decrease P_{r} (2) Readjust spe to C 7 and Cl (3) Check the se (vector contr	correct speed command comes from the vice. 72 PWM frequency selection. d command bias/gain Pr. 125, Pr. 126, C2 to C15. ting of Pr. 369 Number of encoder pulses.)
3	Speed does not rise to the speed command.	(1) Insufficient torque. Torque limit is actuated. (2) Only P (proportional) control is selected.	(1) -1 Increase t (Refer to of 圈调 (1) -2 Insufficien (2) When the loa under P (prop	he torque limit value. rque limit of speed control on Chapter 4 Instruction Manual (Applied)) capacity is heavy, speed deviation will occur ortional) control. Select PI control.

	Phenomenon	Cause	Countermeasures
4	Motor speed is unstable.	(1) The speed command varies. (2) Insufficient torque. (3) The speed control gains do not match the machine. (mechanical resonance)	(1) -1 Check that a correct speed command comes from the command device. (Take measures against noises.) (1) -2 Decrease Pr. 72 PWM frequency selection. (1) -3 Increase Pr. 822 Speed setting filter 1. (Refer to Chapter 4 of the Instruction Manual (Applied)) (2) Increase the torque limit value. (Refer to torque limit of speed control on Chapter 4 of the Instruction Manual (Applied)) (3) -1 Perform easy gain tuning. (Refer to page 77) (3) -2 Adjust Pr. 820, Pr. 821. (Refer to page 79) (3) -3 Perform speed feed forward/model adaptive speed control.
5	Motor or machine hunts (vibration/noise is produced).	(1) The speed control gain is high. (2) The torque control gain is high. (3) The motor wiring is wrong.	(1) -1 Perform easy gain tuning. (Refer to page 77) (1) -2 Decrease Pr. 820 and increase Pr. 821. (1) -3 Perform speed feed forward control and model adaptive speed control. (2) Decrease the Pr. 824 value. (3) Check the wiring
6	Acceleration/deceleration time does not match the setting.	(1) Insufficient torque. (2) Large load inertia.	(1) -1 Increase the torque limit value. (Refer to torque limit of speed control on Chapter 4 of the Instruction Manual (Applied)) (1) -2 Perform speed feed forward control. (2) Set the acceleration/deceleration time that meets the load.
7	Machine operation is unstable.	(1) The speed control gains do not match the machine. (2) Slow response because of improper acceleration/ deceleration time of the inverter.	(1) -1 Perform easy gain tuning. (Refer to page 77) (1) -2 Adjust Pr. 820, Pr. 821. (Refer to page 79) (1) -3 Perform speed feed forward control and model adaptive speed control. (2) Change the acceleration/deceleration time to an optimum value.
8	Speed fluctuates at low speed.	(1) Adverse effect of high carrier frequency. (2) Low speed control gain.	(1) Decrease Pr. 72 PWM frequency selection. (2) Increase Pr. 820 Speed control P gain 1.

4．4 Start／stop from the operation panel（PU operation mode）

| POINT |
| :--- | :--- |
| From where is the frequency command given？ |
| －Operation at the frequency set in the frequency setting mode of the operation panel \rightarrow Refer to 4.4 .1 （Refer to page 83） |
| －Operation using the setting dial as the potentiometer \rightarrow Refer to 4．4．2（Refer to page 85） |
| －Change of frequency with ON／OFF switches connected to terminals \rightarrow Refer to 4．4．3（Refer to page 86） |
| －Frequency setting with a voltage output device \rightarrow Refer to 4．4．4（Refer to page 88） |
| －Frequency setting with a current output device \rightarrow Refer to 4．4．5（Refer to page 90） |

4．4．1 Setting the set frequency to operate（example：performing operation at 30Hz）

POINT

Operation panel（FR－DU07）is used to give both of frequency and start commands in PU operation．

Operation panel （FR－DU07）

Operation example Performing operation at 30 Hz ．

Operation

1．Screen at power－ON
The monitor display appears．
2．Press $\frac{P U}{E X I}$ to choose the PU operation mode．
3．Turn \bigcirc to show the frequency＂3ด亿＂ $(30.00 \mathrm{~Hz})$ you want to set．
The frequency flickers for about 5 s ．
4．While the value is flickering， press SET）to set the frequency．
（SET）\Rightarrow
（ If you do not press SET），the value flickers for about 5 s and the display then returns to＂060＂$(0.00 \mathrm{~Hz})$ ． At this time，return to＂Step 3＂and set the frequency again． After the value flickered for about 3s， the display returns to＂

Display

408

PU indicator is lit．

Flicker … Frequency setting complete！！
\checkmark After 3s，the monitor display appears．

5．Start \rightarrow acceleration \rightarrow constant speed Press FWD or REV to start running．

The frequency on the display increases

in Pr． 7 Acceleration time，and＂30にな＂
$(30.00 \mathrm{~Hz})$ appears．
6．To change the set frequency，perform the operation in above steps 3 and 4 ．
（Starting from the previously set frequency．）

The frequency on the display decreases in Pr． 8 Deceleration time，and the motor stops rotating with＂

Start/stop from the operation panel (PU

 operation mode)? Operation cannot be performed at the set frequency ... Why?
Did you carry out step 4 within 5 s after step 3? (Did you press within 5 s after turning © ?)
? The frequency does not change by turning \bigcirc... Why?
Check to see if the operation mode selected is External operation mode. (Press $\frac{\mathrm{P}=0}{E X T}$) to change to PU operation mode.)
? Operation does not change to the PU operation mode ... Why?
Check that " 0 " (initial value) is set in Pr. 79 Operation mode selection.
Check that the start command is not on.
? Change acceleration time Pr. 7 (Refer to page 61)
Change deceleration time Pr. 8 (Refer to page 61)
For example, limit the motor speed to 60 Hz maximum. Set " 60 Hz " in Pr. 1. (Refer to page 60)
REMARKS
Press to show the set frequency.

can also be used like a potentiometer to perform operation. (Refer to page 85)

4.4.2 Use the setting dial like a potentiometer to perform operation.

POINT

Set "1" (setting dial potentiometer mode) in Pr. 161 Frequency setting/key lock operation selection.
Operation example Change the frequency from 0 Hz to 60 Hz during operation
\longrightarrow Operation \longrightarrow

1. Screen at power-ON

The monitor display appears.
2. Press $\left(\frac{\mathrm{P}}{\mathrm{EXT}}\right.$) to choose PU operation mode.
3. Change Pr. 161 to the setting value " $\boldsymbol{\prime}$ ".
(Refer to page 52 for change of the setting.)
4. Press (FWO (or ©ev) to start the inverter.
5.Turn \bigcirc until "G00G" appears.

The flickering frequency is the set frequency.
You need not press SETT.

PU indicator is lit.

REMARKS
If flickering " 60.00 " turns to " 0.0 ", the Pr. 161 Frequency setting/key lock operation selection setting may not be "1".
Independently of whether the inverter is running or at a stop, the frequency can be set by merely turning

CAUTION

When using setting dial, the frequency goes up to the set value of Pr. 1 Maximum frequency (initial value is 120 Hz). Adjust Pr. 1 Maximum frequency setting according to the application.

Start/stop from the operation panel (PU operation mode)

4.4.3 Setting the frequency by switches (three-speed setting)

POINT

- Use the operation panel (FR-DU07) (FWD or REV) to give a start command.
- Switch ON the RH, RM, or RL signal to give a frequency command. (Three-speed setting)
- Set "4" (External/PU combined operation mode 2) in Pr. 79 Operation mode selection.
[Connection diagram]

Operation example Operation at low speed (10Hz)

———Operation——_

1. Screen at power-ON

The monitor display appears.
2. Press (100e) to choose the parameter setting mode.

3. Turn \bigcirc until P. $7 \boldsymbol{I S}$ (Pr. 79) appears.
4. Press (set) to read the present set value. " G^{1} " (initial value) appears.
5. Turn to change it to the setting value "Ч".

6 . Press (stet to set.
7. Mode/monitor check

Press (MODE twice to change to monitor / frequency monitor.
[PU] indicator and [EXT] indicator are lit.
8. Start

Turn ON the low-speed switch (RL).

Flicker \cdots Parameter setting complete!!

Display

9. Acceleration \rightarrow constant speed Press FWD or REV to start running.

The frequency on the display increases
in Pr. 7 Acceleration time, and "ririn"
$(10.00 \mathrm{~Hz})$ appears.
10. Deceleration

Press $\frac{\text { STOP }}{\text { RISEIT }}$ to stop.
The frequency on the display decreases in
Pr. 8 Deceleration time, and the motor stops
rotating with "חIO" $(0.00 \mathrm{~Hz})$ displayed. rotating with "にな!" 0.00 Hz) displayed.
11. stop

Turn OFF the low-speed switch (RL).

? 60 Hz for the $\mathrm{RH}, 30 \mathrm{~Hz}$ for the RM and 10 Hz for the RL are not output when they are turned ON ... Why?
Check for the setting of Pr. 4, Pr. 5, and Pr. 6 once again.
Check for the setting of Pr. 1 Maximum frequency and Pr. 2 Minimum frequency once again. (Refer to page 60.)
Check that Pr. 180 RL terminal function selection $=$ " 0 ", Pr. 181 RM terminal function selection $=$ "1", Pr. 182 RH terminal function selection $=" 2$ " and Pr. 59 Remote function selection $=" 0$ ". (all are initial values)
? [FWD (or REV)] lamp is not lit ... Why?
Check that wiring is correct. Check the wiring once again.
Check for the Pr. 79 setting once again. (Pr. 79 must be set to "4".) (Refer to page 62.)
? Change the frequency of the terminals RL, RM, and RH. ... How?
Refer to page 94 to change the running frequency at each terminal in Pr. 4 Multi-speed setting (high speed), Pr. 5 Multi-speed setting (middle speed), and Pr. 6 Multi-speed setting (low speed).

REMARKS

Initial values of terminals RH, RM, and RL are $60 \mathrm{~Hz}, 30 \mathrm{~Hz}$, and 10 Hz . (To change, set Pr. 4, Pr. 5, and Pr. 6.)
In the initial setting, when two or more of multi-speed settings are simultaneously selected, priority is given to the set frequency of the lower signal. For example, when RH and RM signals turn ON, RM signal (Pr.5) has a higher priority.

- Maximum of 15 -speed operation can be performed. (Refer to the Chapter 4 of the Instruction Manual (Applied).)

4.4.4 Setting the frequency by analog input (voltage input)

POINT

- Use the operation panel (FR-DU07) (FWD or REV) to give a start command.
- Use the (frequency setting) potentiometer to give a frequency command.
(Connect terminals 2 and 5 to input a voltage.)
- Set "4" (External/PU combined operation mode 2) in Pr. 79 Operation mode selection.
[Connection diagram]
(The inverter supplies 5 V of power to the frequency setting potentiometer.(Terminal 10))

Operation example Performing operation at 60 Hz .

Operation

1. Screen at powe-ON

The monitor display appears.
2. Press (MOOE to choose the parameter setting mode.
3. Turn \bigcirc until 9 (Pr. 79) appears.
4. Press SET to read the present set value. " 0 " (initial value) appears.
5. Turn to change it to the setting value " 4 ".
6. Press (set to set.
7. Mode/monitor check

Press (NODE twice to choose the monitor/frequency monitor. [PU] indicator and [EXT] indicator are lit.
8. Start

Press FWD or Rev.
[FWD] or [REV] is flickering as no frequency command is given.
9. Acceleration \rightarrow constant speed Turn the potentiometer (frequency setting potentiometer) clockwise slowly to full. The frequency value on the display increases in Pr. 7 Acceleration time, and " 日nian " 60 Hz) appears.

Flicker ... Parameter setting complete!!

a

——Operation \longrightarrow

10. Deceleration

Turn the potentiometer (frequency setting potentiometer) counterclockwise slowly to full. The frequency on the display decreases in Pr. 8 Deceleration time, and the motor stops rotating with "Crif" $(0.00 \mathrm{~Hz})$ displayed. [FWD] indicator or [REV] indicator flickers.
11. Stop

Press
[FWD] indicator or [REV] indicator turns OFF.

? Change the frequency $(60 \mathrm{~Hz})$ of the maximum value of potentiometer (at 5 V , initial value)
Adjust the frequency in Pr. 125 Terminal 2 frequency setting gain frequency. (Refer to page 97.)
? Change the frequency $(0 \mathrm{~Hz})$ of the minimum value of potentiometer (at 0 V , initial value)
Adjust the frequency in calibration parameter C2 Terminal 2 frequency setting bias frequency. (Refer to Chapter 4 of the Instruction Manual (Applied).)

4.4.5 Setting the frequency by analog input (current input)
 POINT

- Use the operation panel (FR-DU07) (FWD) or REV) to give a start command.
- Input a current to give a frequency command. (Connect terminals 4 and 5 to input a current.)
- Switch ON the AU signal.
- Set "4" (External/PU combined operation mode 2) in Pr. 79 Operation mode selection.
[Connection diagram]

Operation example Performing operation at 60 Hz .

1. Screen at power-ON

The monitor display appears.
2. Press (nooe to choose the parameter setting mode.
3. Turn \bigcirc until $P^{?} 9(\operatorname{Pr} .79)$ appears.
4. Press sEt to read the present set value. " $[1]$ "(initial value) appears.
5. Turn to change it to the setting value " 4"
6. Press (ster) to set.
7. Mode/monitor check

Press (Mooe) twice to choose the monitor/frequency monitor.
$[\mathrm{PU}]$ indicator and $[\mathrm{EXT}]$ indicator are lit.
8. Start

Check that the terminal 4 input selection signal (AU) is on.
Press FWD or REV.
[FWD] or [REV] is flickering as no frequency command is given.

(FWD) /REV)


```
P.79
```


Flicker \cdots Parameter setting complete!!

\Rightarrow

REMARKS

Pr. 184 AU terminal function selection must be set to "4" (AU signal) (initial value). (Refer to Chapter 4 of the Instruction Manual (Applied).)
? Change the frequency $(60 \mathrm{~Hz})$ at the maximum value of potentiometer (at 20 mA , initial value)
Adjust the frequency in Pr. 126 Terminal 4 frequency setting gain frequency. (Refer to page 99.)
? Change the frequency $(0 \mathrm{~Hz})$ at the minimum value of potentiometer (at 4 mA , initial value)
Adjust the frequency in calibration parameter C5 Terminal 4 frequency setting bias frequency. (Refer to Chapter 4 of the Instruction Manual (Applied).)

4.5 Start and stop using terminals (External operation)

POINT

From where is the frequency command given?

- Operation at the frequency set in the frequency setting mode of the operation panel \rightarrow Refer to 4.5.1(Refer to page 92)

Give a frequency command by switch (multi-speed setting) \rightarrow Refer to 4.5.2 (Refer to page 94)
Perform frequency setting by a voltage output device \rightarrow Refer to 4.5 .3 (Refer to page 96)
Perform frequency setting by a current output device \rightarrow Refer to 4.5 .5 (Refer to page 98)

4.5.1 Setting the frequency by the operation panel (Pr. 79=3)

POINT

- Switch ON the STF(STR) signal to give a start command.
- Use the operation panel (FR-DU07) (\bigcirc) to give a frequency command.
- Set "3" (External/PU combined operation mode 1) in Pr. 79 Operation mode selection.
[Connection diagram]

(FR-DU07)

Operation example Performing operation at 30 Hz .

1. Screen at power-ON

The monitor display appears.
2.Press $\left(\frac{\mathrm{PU}}{\mathrm{EXI}}\right)$ to choose the PU operation mode.
3. Press (MODE) to choose the parameter setting mode.
4.Turn \bigcirc until \boldsymbol{F}. 9 (Pr.79) appears.
5.Press (SET) to read the present set value. "
6. Turn \bigcirc to change it to the setting value "Э".
7.Press SET to set.
8. Mode/monitor check

Press (MODE) twice to choose the monitor/frequency monitor.
[PU] indicator and [EXT] indicator are lit.

Display

Flicker … Parameter setting complete!!

——Operation

Display

9．Turn \bigcirc to show the selected frequency，＂30010＂（30．00Hz）
The frequency flickers for about 5 s ．
10．While the value is flickering， press $($ ste $)$ to set the frequency．
（If you do not press（SET），the value flickers） for about 5 s and the display then returns to 0 IGI（display） Hz ．
At this time，return to＂Step 8＂and set the frequency again．
After about 3 s of flickering of the value， the display goes back to＂ח⿵⿰丿⺄口⿺乀乛⿱二小欠＂（monitor display）．

11．Start \rightarrow acceleration \rightarrow constant speed Turn ON the start switch（STF or STR）． The frequency on the display increases in Pr． 7 Acceleration time，and＂30にな＂ $(30.00 \mathrm{~Hz})$ appears．

［FWD］indicator is lit during forward rotation， and $[R E V]$ indicator is lit during reverse rotation．

CAUTION

When both of STF and STR signals are turned
ON ，the motor cannot start．
If both are turned ON while the motor is
running，the motor decelerates to a stop．
12．To change the set frequency，perform the operation in above steps 9 and 10 ．
（Starting from the previously set frequency．）

13．Deceleration \rightarrow Stop
Turn OFF the start switch（STF or STR）．
The frequency on the display decreases in Pr． 8 Deceleration time， and the motor stops rotating with ＂のロ゙に＂$(0.00 \mathrm{~Hz})$ displayed．

Forward

REMARKS

Pr． 178 STF terminal function selection must be set to＂60＂（or Pr． 179 STR terminal function selection must be set to＂61＂）． （all are initial values）
When Pr． 79 Operation mode selection is set to＂3＂，multi－speed operation（refer to page 94）is also valid．
？When the inverter is stopped by
 of the operation panel（FR－DU07），PS and
 Flickering displayed alternately．

1．Turn the start switch（STF or STR）OFF．
2．The display can be reset by $\frac{\mathrm{PU}}{\mathrm{EXT}}$ ．

4.5.2 Setting the frequency by switches (three-speed setting) (Pr. 4 to Pr. 6)

POINT

- Switch ON the STF (STR) signal to give a start command.
- Switch ON the RH, RM, or RL signal to give a frequency command.
- [EXT] must be lit. (When [PU] is lit, switch it to [EXT] with $\frac{\mathrm{PU}}{\mathrm{EXT}}$.)
- The initial values of the terminals RH, RM and RL are $60 \mathrm{~Hz}, 30 \mathrm{~Hz}$, and 10 Hz . (Use Pr. 4, Pr. 5 and Pr. 6 to change.)
- Operation at 7-speed can be performed by turning two (or three) terminals simultaneously. (Refer to Chapter 4 of

圈 the Instruction Manual (Applied).)
[Connection diagram]

Changing example Operation at high speed $(60 \mathrm{~Hz})$.

Operation

1. Screen at power-ON

The monitor display appears.
2. Turn ON the high-speed switch (RH).
3. Acceleration \rightarrow constant speed

Turn ON the start switch (STF or STR). The frequency on the display increases in Pr .7 Acceleration time, and "Б0にח" (60.00 Hz) appears. [FWD] indicator is lit during forward rotation, and [REV] indicator is lit during reverse rotation. -When RM is turned $\mathrm{ON}, 30 \mathrm{~Hz}$ is displayed. When RL is turned $\mathrm{ON}, 10 \mathrm{~Hz}$ is displayed.
——CAUTION
When both of STF and STR signals are turned ON, the motor cannot start.
If both are turned ON while the motor is
running, the motor decelerates to a stop.
4. Turn OFF the start switch (STF or STR).

The frequency on the display decreases in Pr. 8 Deceleration time, and the motor stops rotating with "OICT" $(0.00 \mathrm{~Hz})$ displayed.
[FWD] indicator or [REV] indicator turns OFF.
5. Stop

Turn OFF the high-speed switch (RH).

High speed

Display

? [EXT] is not lit even when $\frac{\mathrm{PU}}{\mathrm{EXT}}$ is pressed ... Why?
Switchover of the operation mode with $\left(\frac{P U}{E X T}\right.$ is valid when Pr. $79=" 0$ " (initial value).
? $50 \mathrm{~Hz}, 30 \mathrm{~Hz}$ and 10 Hz are not output from RH, RM and RL respectively when they are turned ON. ... Why?
Check for the setting of Pr. 4, Pr. 5, and Pr. 6 once again.
Check for the setting of Pr. 1 Maximum frequency and Pr. 2 Minimum frequency once again. (Refer to page 60)
Check for the Pr. 79 setting once again. (Pr. 79 must be set to "0" or "2".) (Refer to page 62)
Check that Pr. 180 RL terminal function selection = "0", Pr. 181 RM terminal function selection $=" 1$ ", Pr. 182 RH terminal function selection $=" 2 "$ and Pr. 59 Remote function selection $=" 0 "$. (All are initial values.)
? [FWD (or REV)] is not lit. ... Why?
Check that wiring is correct. Check it again.
Check that "60" is set in Pr. 178 STF terminal function selection (or "61" is set in Pr. 179 STR terminal function selection)?
(All are initial values.)
? How is the frequency setting from 4 to 7 speed?
In the initial setting, when two or more of multi-speed settings are simultaneously selected, priority is given to the set frequency of the lower signal. For example, when RH and RM signals turn ON, the RM signal (Pr. 5) has a higher priority. By setting Pr. 24 to Pr. 27 (multi-speed setting), up to 7- speed can be set by combinations of RH, RM, and RL signals. Refer to the Chapter 4 of the Instruction Manual (Applied).
? Perform multi-speed operation more than 8 speed. ... How?
Use the REX signal to perform the operation. Maximum of 15 -speed operation can be performed. Refer to Chapter 4 of the Instruction Manual (Applied).

REMARKS

External operation is fixed by setting " 2 " (External operation mode) in Pr. 79 Operation mode selection when you do not want to take time pressing $\frac{P(\mathrm{PUT}}{\mathrm{EXT}}$ or when you want to use the current start command and frequency command. (Refer to page 62)

4.5.3 Setting the frequency by analog input (voltage input)

POINT

- Switch ON the STF(STR) signal to give a start command.
- Use the potentiometer (frequency setting potentiometer) to give a frequency command. (Connect terminals 2 and 5 to input a voltage.)
[Connection diagram]
(The inverter supplies 5 V of power to frequency setting potentiometer. (Terminal 10))

Operation example Performing operation at 60 Hz .

The monitor display appears.
2. Start

Turn ON the start switch (STF or STR).
[FWD] or [REV] is flickering as no frequency command is given.

- CAUTION

When both of STF and STR signals are turned ON , the motor cannot start.
If both are turned ON while the motor is
running, the motor decelerates to a stop.
3. Acceleration \rightarrow constant speed

Turn the potentiometer (frequency setting potentiometer) clockwise slowly to full.
The frequency on the display increases in Pr. 7
Acceleration time, and "Gח0" (60.00 Hz) appears. [FWD] indicator is lit during forward rotation, and [REV] indicator is lit during reverse rotation.
4. Deceleration

Turn the potentiometer (frequency setting potentiometer) counterclockwise slowly to full. The frequency on the display decreases in Pr. 8 Deceleration time, and the motor stops rotating with "
[FWD] indicator or [EXT] indicator flickers.

5.Stop

Turn the start switch (STF or STR) OFF. [FWD] indicator or [REV] indicator turns OFF.

Forward
rotation Reverse

When you want to operate in External operation mode always at power-ON or when you want to save the trouble of $\left(\frac{\text { PU }}{\text { EXT }}\right)$ input, set "2" (External operation mode) in Pr. 79 Operation mode selection to choose External operation mode always.

REMARKS

Pr. 178 STF terminal function selection must be set to "60" (or Pr. 179 STR terminal function selection must be set to "61").
(all are initial values)
? The motor will not rotate ... Why?
Check that [EXT] is lit.
[EXT] is valid when Pr. $79=$ " 0 " (initial value) or " 2 ".
Use $\left(\frac{P U}{E X T}\right)$ to lit [EXT].
Check that wiring is correct. Check once again.
? Change the frequency $(0 \mathrm{~Hz})$ at the minimum voltage input (at 0 V , initial value)
Adjust the frequency in calibration parameter C2 Terminal 2 frequency setting bias frequency. (Refer to Chapter 4 of the Instruction Manual (Applied).)
${ }^{9} 9$ When you want to compensate frequency setting, use terminal 1.
For details, refer to Chapter 4 of the Instruction Manual (Applied).

4.5.4 Changing the frequency $(60 \mathrm{~Hz}$, initial value) at the maximum voltage input (5V, initial value)

<How to change the maximum frequency>

Changing example When you want to use the 0 to 5VDC input frequency setting potentiometer to change the frequency at 5 V from 60 Hz (initial value) to 50 Hz Adjust to output 50 Hz at 5 V voltage input. Set " 50 Hz " in Pr. 125.

? The frequency meter (indicator) connected across terminals FM and SD does not indicate exactly $50 \mathrm{~Hz} \ldots$ Why?
The meter can be adjusted by calibration parameter C0 FM terminal calibration. (Refer to Chapter 4 of选 the Instruction Manual (Applied).)
? Set frequency at OV using calibration parameter $C 2$ and adjust the indicator using calibration parameter $C 0$.
(Refer to Chapter 4 of the Instruction Manual (Applied).)

REMARKS

As other adjustment methods of frequency setting voltage gain, there are methods to adjust with a voltage applied to across terminals 2 and 5 and adjust at any point without a voltage applied.
(Refer to Chapter 4 of the Instruction Manual (Applied) for the setting method of calibration parameter C4.)

4.5.5 Setting the frequency by analog input (current input)

POINT

- Switch ON the STF (STR) signal to give a start command.
- Switch ON the AU signal.
- Set "2" (External operation mode) in Pr. 79 Operation mode selection.
[Connection diagram]

Operation

1.Screen at power-ON

The monitor display appears.
2. Start

Check that the terminal 4 input selection signal
(AU) is ON.
Turn the start switch (STF or STR) ON.
[FWD] or [REV] is flickering as no frequency command is given. (Refer to page 62.)

CAUTION
When both of STF and STR signals are turned ON, the motor cannot start.
If both are turned ON while the motor is
running, the motor decelerates to a stop.
3.Acceleration \rightarrow constant speed

Perform 20 mA input.
The frequency on the display increases
in Pr. 7 Acceleration time, and "Eririn"
$(60.00 \mathrm{~Hz})$ appears.

[FWD] indicator is lit during forward rotation,
and [REV] indicator is lit during reverse rotation.
4.Deceleration

Input 4 mA or less.
The frequency on the display decreases in Pr. 8 Deceleration time, and the motor stops rotating with "ririo" $(0.00 \mathrm{~Hz})$ displayed. [FWD] indicator or [EXT] indicator flickers.
5.stop

Turn the start switch (STF or STR) OFF.
[FWD] indicator or [REV] indicator turns OFF.

REMARKS

Pr. 184 AU terminal function selection must be set to "4" (AU signal) (initial value). (Refer to Chapter 4 of the Instruction Manual (Applied).)
? The motor will not rotate ... Why?
Check that [EXT] is lit.
[EXT] is valid when Pr. $79=$ " 0 " (initial value) or " 2 ".
Use $\left(\frac{P}{E X T}\right)$ to lit [EXT].
Check that the AU signal is ON.
Turn the AU signal ON.
Check that wiring is correct. Check it again.
? Change the frequency $(0 \mathrm{~Hz})$ at the minimum current input (at 4 mA , initial value)
Adjust the frequency in calibration parameter C5 Terminal 4 frequency setting bias frequency.
(Refer to Chapter 4 of the Instruction Manual (Applied).)

4.5.6 Changing the frequency (60 Hz , initial value) at the maximum current input (at 20 mA , initial value)

<How to change the maximum frequency?>

Changing example When you want to use the 4 to 20 mA input frequency setting potentiometer to change the 20 mA time frequency from 60 Hz (initial value) to 50 Hz Adjust to output 50 Hz at 20 mA current input. Set "50Hz" in Pr. 126.

1.Turn Oun

2. Press (SET) to show the currently set value. $(60.00 \mathrm{~Hz})$
3. Turn \bigcirc to change the set value to "5aCic". $(50.00 \mathrm{~Hz})$
4.Press set to set the value.
5.Mode/monitor check

Press (MODE twice to choose the monitor/frequency monitor.
6. Turn the start switch (STF or STR) ON to allow

20 mA current to flow. (Refer to 4.5 .5 steps 2 to 5)
? The frequency meter (indicator) connected across terminals FM and SD does not indicate exactly 50 Hz ... Why? The meter can be adjusted by calibration parameter CO FM terminal calibration.
(Refer to Chapter 4 of the Instruction Manual (Applied).)
? Set frequency at 4 mA using calibration parameter C5 and adjust the indicator using calibration parameter C0.
(Refer to Chapter 4 of the Instruction Manual (Applied).)

REMARKS

As other adjustment methods of frequency setting voltage gain, there are methods to adjust with a voltage applied to across terminals 4 and 5 and adjust at any point without a voltage applied.
(Refer to Chapter 4 of the Instruction Manual (Applied) for the setting method of calibration parameter C7.)

4.6 Parameter List

4.6.1 List of parameters classified by the purpose

This Instruction Manual provides basic explanation of parameters. For parameters not stated, refer to the Chapter 4 Parameter of the Instruction Manual (Applied).
Set the parameters according to the operating conditions. The following list indicates purpose of use and corresponding parameters.

Purpose of Use		Parameter Number
Control mode	Change the control method	Pr. 80, Pr. 81, Pr. 451, Pr. 800
Speed control by Real sensorless vector control and vector control	Torque limit level setting for speed control	Pr. 22, Pr. 803, Pr. 810 to Pr. 817, Pr. 858, Pr. 868, Pr. 874
	To perform high accuracy/fast response operation (gain adjustment of Real sensorless vector control and vector control)	Pr. 818 to Pr. 821, Pr. 830, Pr. 831, Pr. 880
	Speed feed forward control, model adaptive speed control	Pr. 828, Pr. 877 to Pr. 881
	Torque bias function	Pr. 840 to Pr. 848
	Prevent the motor from overrunning	Pr. 285, Pr. 853, Pr. 873
	Notch filter	Pr. 862, Pr. 863
Torque control by Real sensorless vector control and vector control	Torque command	Pr. 803 to Pr. 806
	Speed limit	Pr. 807 to Pr. 809
	Gain adjustment for torque control	Pr. 824, Pr. 825, Pr. 834, Pr. 835
Position control by vector control	Simple position feed function by contact input	Pr. 419, Pr. 464 to Pr. 494
	Position control by pulse train input of the inverter	Pr. 419, Pr. 428 to Pr. 430
	Setting the electronic gear	Pr. 420, Pr. 421, Pr. 424
	Setting of positioning adjustment parameter	Pr. 426, Pr. 427
	Gain adjustment of position control	Pr. 422, Pr. 423, Pr. 425
Adjust the output torque of the motor (current)	Manual torque boost	Pr. 0, Pr. 46, Pr. 112
	Advanced magnetic flux vector control	Pr. 80, Pr. 81, Pr. 89, Pr. 453, Pr. 454, Pr. 569
	Real sensorless vector control	Pr. 80, Pr. 81, Pr. 451, Pr. 800
	Slip compensation	Pr. 245 to Pr. 247
	Stall prevention operation	Pr. 22, Pr. 23, Pr. 48, Pr. 49, Pr. 66, Pr. 114, Pr. 115, Pr. 148, Pr. 149, Pr. 154, Pr. 156, Pr. 157, Pr. 858, Pr. 868
	Torque limit	Pr. 22, Pr. 803, Pr. 810, Pr. 812 to Pr. 817, Pr. 858, Pr. 868, Pr. 874
Limit the output frequency	Maximum/minimum frequency	Pr. 1, Pr. 2, Pr. 18
	Avoid mechanical resonance points (frequency jump)	Pr. 31 to Pr. 36
	Speed limit	Pr. 807 to Pr. 809
Set V/F pattern	Base frequency, voltage	Pr. 3, Pr. 19, Pr. 47, Pr. 113
	V/F pattern matching applications	Pr. 14
	Adjustable 5 points V/F	Pr. 71, Pr. 100 to Pr. 109
Frequency setting with terminals (contact input)	Multi-speed setting operation	Pr. 4 to Pr. 6, Pr. 24 to Pr. 27, Pr. 232 to Pr. 239
	Jog operation	Pr. 15, Pr. 16
	Input compensation of multi-speed and remote setting	Pr. 28
	Remote setting function	Pr. 59

Purpose of Use		Parameter Number
Acceleration/deceleration time/pattern adjustment	Acceleration/deceleration time setting	$\begin{aligned} & \hline \text { Pr. 7, Pr. 8, Pr. 20, Pr. 21, Pr. 44, } \\ & \text { Pr. 45, Pr. 110, Pr. } 111 \end{aligned}$
	Starting frequency	Pr. 13, Pr. 571
	Acceleration/deceleration pattern and backlash measures	Pr. 29, Pr. 140 to Pr. 143, Pr. 380 to Pr. 383, Pr. 516 to Pr. 519
	Set a shortest and optimum acceleration/deceleration time automatically. (Automatic acceleration/deceleration)	Pr. 61 to Pr. 64, Pr. 292, Pr. 293
	Regeneration avoidance functions at deceleration	Pr. 882 to Pr.886, Pr. 665
Selection and protection of a motor	Motor protection from overheat (electronic thermal relay function)	Pr. 9, Pr. 51
	Use the constant-torque motor (applied motor)	Pr. 71, Pr. 450
	Offline auto tuning	Pr. 82 to Pr. 84, Pr. 90 to Pr. 94, Pr. 96, Pr. 455 to Pr. 463, Pr. 684, Pr. 859, Pr. 860
	Online auto tuning	Pr. 95, Pr. 574
	Easy gain tuning	Pr. 818, Pr. 819
Motor brake and stop operation	DC injection brake, Magnetic flux decay output shutoff	Pr. 10 to Pr. 12, Pr. 850
	Selection of motor stopping method	Pr. 250
	Decelerate the motor to a stop at instantaneous power failure	Pr. 261 to Pr. 266, Pr. 294
	Stop-on-contact control	Pr. 6, Pr. 270, Pr. 275, Pr. 276
	Brake sequence function	Pr. 278 to Pr. 285, Pr. 292
Function assignment of external terminal and control	Function assignment of input terminal	Pr. 178 to Pr. 189
	Start signal selection	Pr. 250
	Logic selection of output stop signal (MRS)	Pr. 17
	Selection of action conditions of the second (third) function signal (RT(X9))	Pr. 155
	Terminal assignment of output terminal	Pr. 190 to Pr. 196
	Output frequency detection (SU, FU, FU2, FU3, FB, FB2, FB3, LS signal)	$\begin{aligned} & \text { Pr. } 41 \text { to Pr. } 43 \text {, Pr. 50, Pr. 116, } \\ & \text { Pr. } 865 \end{aligned}$
	Output current detection (Y12 signal) Zero current detection (Y13 signal)	Pr. 150 to Pr. 153, Pr. 166, Pr. 167
	Remote output function (REM signal)	Pr. 495 to Pr. 497
Monitor display and monitor output signal	Initial settings of RS-485 communication	Pr. 37, Pr. 144
	Change of DU/PU monitor descriptions Cumulative monitor clear	Pr. 52, Pr. 170, Pr. 171, Pr. 563, $\text { Pr. 564, Pr. } 891$
	Change of the monitor output from terminal FM and AM	$\begin{aligned} & \text { Pr. } 54 \text { to Pr. } 56, \text { Pr. 158, Pr. } 866 \text {, } \\ & \text { Pr. } 867 \end{aligned}$
	Adjustment of terminal FM and AM (calibration)	C0 (Pr. 900), C1 (Pr. 901)
	Energy saving monitor	Pr. 891 to Pr. 899
Output frequency detection, current and torque	Output frequency detection (SU, FU, FU2, FU3, FB, FB2, FB3, LS signal)	$\begin{aligned} & \text { Pr. } 41 \text { to Pr. 43, Pr. 50, Pr. 116, } \\ & \text { Pr. } 865 \end{aligned}$
	Output current detection (Y12 signal) Zero current detection (Y13 signal)	Pr. 150 to Pr. 153, Pr. 166, Pr. 167
	Torque detection (TU signal)	Pr. 864
Operation selection at power failure and instantaneous power failure	Restart operation after instantaneous power failure/Flying start	Pr. 57, Pr. 58, Pr. 162 to Pr. 165, Pr. 299, Pr. 611
	Decelerate the motor to a stop at instantaneous power failure	Pr. 261 to Pr. 266, Pr. 294
Operation setting at fault occurrence	Retry function at fault occurrence	Pr. 65, Pr. 67 to Pr. 69
	Output function of fault code	Pr. 76
	Input/output phase failure protection selection	Pr. 251, Pr. 872
	Fault definition	Pr. 875
	Regeneration avoidance function	Pr. 882 to Pr. 886, Pr. 665

Parameter List

Purpose of Use		Parameter Number
Energy saving operation	Energy saving control selection	Pr. 60
	How much energy can be saved (energy saving monitor)	Pr. 891 to Pr. 899
Reduction of the motor noise Measures against noise and leakage currents	Carrier frequency and SoftPWM selection	Pr. 72, Pr. 240
	Noise elimination at the analog input	$\begin{aligned} & \text { Pr. 74, Pr. 822, Pr. 826, Pr. 832, } \\ & \text { Pr. 836, Pr. } 849 \end{aligned}$
Frequency setting by analog input	Analog input selection	Pr. 73, Pr. 267
	Override function	Pr. 73, Pr. 252, Pr. 253
	Noise elimination at the analog input	$\begin{aligned} & \text { Pr. 74, Pr. 822, Pr. 826, Pr. 832, } \\ & \text { Pr. 836, Pr. } 849 \end{aligned}$
	Change of analog input frequency, adjustment of voltage, current input and frequency (calibration)	Pr. 125, Pr. 126, Pr. 241, C2 to C7 (Pr. 902 to Pr. 905)
	Compensation at the analog input	Pr. 242, Pr. 243
Misoperation prevention and parameter setting restriction	Reset selection, disconnected PU detection	Pr. 75
	Prevention of parameter rewrite Password function	$\begin{array}{\|l\|} \hline \text { Pr. 77, } \\ \text { Pr. 296, Pr. } 297 \end{array}$
	Prevention of reverse rotation of the motor	Pr. 78
	Display necessary parameters only. (user group)	Pr. 160, Pr. 172 to Pr. 174
	Control of parameter write by communication	Pr. 342
Selection of operation mode and operation location	Operation mode selection	Pr. 79
	Operation mode when power is on	Pr. 79, Pr. 340
	Operation command source and speed command source during communication operation	Pr. 338, Pr. 339
	Selection of the NET mode operation control source	Pr. 550
	Selection of the PU mode operation control source	Pr. 551
Communication operation and setting	Initial settings of RS-485 communication	$\begin{aligned} & \text { Pr. } 117 \text { to Pr. 124, Pr. } 331 \text { to Pr. 337, } \\ & \text { Pr. } 341 \end{aligned}$
	Control of parameter write by communication	Pr. 342
	Modbus-RTU communication specifications	Pr. 343, Pr. 539
	Operation command source and speed command source during communication operation	Pr. 338, Pr. 339
	Use setup software (USB communication)	Pr. 547, Pr. 548
	Selection of the NET mode operation control source	Pr. 550
	Modbus-RTU protocol (communication protocol selection)	Pr. 549
Special operation and frequency control	PID control	Pr. 127 to Pr. 134, Pr. 575 to Pr. 577
	Switch between the inverter operation and commercial power-supply operation to use	Pr. 135 to Pr. 139, Pr. 159
	Operate at a high speed when a load is light. (load torque high speed frequency control)	Pr. 4, Pr. 5, Pr. 270 to Pr. 274
	Droop control	Pr. 286 to Pr. 288
	Frequency control by pulse train input	Pr. 291, Pr. 384 to Pr. 386
Useful functions	Free parameter	Pr. 888, Pr. 889
	Increase cooling fan life	Pr. 244
	To determine the maintenance time of parts.	Pr. 255 to Pr. 259, Pr. 503, Pr. 504
	How much energy can be saved (energy saving monitor)	Pr. 60, Pr. 891 to Pr. 899
Setting from the parameter unit and operation panel	Parameter unit language switchover	Pr. 145
	Operation selection of the operation panel	Pr. 161
	Buzzer control of the operation panel	Pr. 990
	Contrast adjustment of the parameter unit	Pr. 991

4.6.2 Parameter list

- © indicates simple mode parameters.
- The abbreviations in the explanations below indicate:

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline $$
\begin{aligned}
& \text { 들 } \\
& \text { 을 } \\
& \text { 프 }
\end{aligned}
$$ \& Para \& \& Name \& Incre ments \& Initial Value \& Range \& \multicolumn{2}{|r|}{Description}

\hline \multirow{12}{*}{Acceleration/deceleration time setting} \& \& \& Acceleration time \& $$
\begin{gathered}
0.1 / \\
0.01 \mathrm{~s}
\end{gathered}
$$ \& 5/15s * \& $$
\begin{aligned}
& 0 \text { to } 3600 / \\
& 360 \mathrm{~s}
\end{aligned}
$$ \& Set the motor acc The initial valu capacity. (7.5K or \& time. according to the inverter 1 K or higher)

\hline \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{8 (0)

20}} \& Deceleration time \& $$
\begin{gathered}
0.1 / \\
0.01 \mathrm{~s}
\end{gathered}
$$ \& 5/15s* \& \[

$$
\begin{aligned}
& 0 \text { to } 3600 / \\
& 360 \mathrm{~s}
\end{aligned}
$$
\] \& Set the motor de capacity. (7.5K \& time. according to the inverter 1 K or higher)

\hline \& \& \& Acceleration/deceleration reference frequency \& 0.01 Hz \& 60 Hz \& 1 to 400 Hz \& Set the frequency deceleration time. from stop to Pr. 20 \& d as acceleration/ frequency change time eration/deceleration time.

\hline \& \multicolumn{2}{|r|}{\multirow{2}{*}{21}} \& \multirow{2}{*}{Acceleration/deceleration time increments} \& \multirow{2}{*}{1} \& \multirow{2}{*}{0} \& 0 \& | Increments: 0.1s |
| :--- |
| Range: 0 to 3600s | \& \multirow[t]{2}{*}{The increments and setting range of acceleration/deceleration time setting can be changed.}

\hline \& \& \& \& \& \& 1 \& | Increments: 0.01s |
| :--- |
| Range: 0 to 360s | \&

\hline \& \& 44 \& Second acceleration/ deceleration time \& $$
\begin{gathered}
0.1 / \\
0.01 \mathrm{~s}
\end{gathered}
$$ \& 5 s \& \[

$$
\begin{aligned}
& 0 \text { to } 3600 / \\
& 360 \mathrm{~s}
\end{aligned}
$$
\] \& \multicolumn{2}{|l|}{Set the acceleration/deceleration time when the RT signal is on.}

\hline \& \& 45 \& Second deceleration time \& $$
0.1 /
$$ \& 9999 \& \[

$$
\begin{array}{|l|}
\hline 0 \text { to } 3600 / \\
360 \text { s } \\
\hline
\end{array}
$$
\] \& \multicolumn{2}{|l|}{Set the deceleration time when the RT signal is on.}

\hline \& \& \& \& \& \& 9999 \& \multicolumn{2}{|l|}{Acceleration time = deceleration time}

\hline \& \& \multirow[t]{2}{*}{10} \& \multirow[t]{2}{*}{Third acceleration/ deceleration time} \& \multirow[t]{2}{*}{$$
\begin{array}{|c|}
0.1 / \\
0.01 \mathrm{~Hz}
\end{array}
$$} \& \multirow[t]{2}{*}{9999} \& \[

$$
\begin{aligned}
& 0 \text { to } 3600 / \\
& 360 \mathrm{~s}
\end{aligned}
$$
\] \& \multicolumn{2}{|l|}{Set the acceleration/deceleration time when the X9 signal is on.}

\hline \& \& \& \& \& \& 9999 \& \multicolumn{2}{|l|}{Function invalid}

\hline \& \& \multirow[t]{2}{*}{111} \& \multirow[t]{2}{*}{Third deceleration time} \& \multirow[t]{2}{*}{$$
\begin{array}{|c|}
0.1 / \\
0.01 \mathrm{~Hz}
\end{array}
$$} \& \multirow[t]{2}{*}{9999} \& \[

$$
\begin{aligned}
& 0 \text { to } 3600 / \\
& 360 \text { s }
\end{aligned}
$$
\] \& \multicolumn{2}{|l|}{Set the deceleration time when the X 9 signal is on.}

\hline \& \& \& \& \& \& 9999 \& \multicolumn{2}{|l|}{Acceleration time = deceleration time}

\hline \multirow[t]{3}{*}{} \& \multirow[t]{3}{*}{9} \& (-) \& Electronic thermal O/L relay \& 0.01A \& Rated inverter current \& 0 to 500A \& Set the rated motor \&

\hline \& \& \multirow[t]{2}{*}{51} \& \multirow[t]{2}{*}{Second electronic thermal O/L relay} \& \multirow[t]{2}{*}{0.01A} \& \multirow[t]{2}{*}{9999} \& 0 to 500A \& \multicolumn{2}{|l|}{Valid when the RT signal is on. Set the rated motor current.}

\hline \& \& \& \& \& \& 9999 \& \multicolumn{2}{|l|}{Second electronic thermal O/L relay invalid}

\hline \multirow{12}{*}{} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{10}} \& \multirow[t]{2}{*}{DC injection brake operation frequency} \& \multirow[t]{2}{*}{0.01 Hz} \& \multirow[t]{2}{*}{$3 / 0.5 \mathrm{~Hz}^{*}$} \& 0 to 120Hz \& \multicolumn{2}{|l|}{| Operation frequency of the DC injection brake. |
| :--- |
| * The initial value changes from 3 Hz to 0.5 Hz when a control mode other than vector is changed to vector control. |}

\hline \& \& \& \& \& \& 9999 \& \multicolumn{2}{|l|}{Operate when the output frequency becomes less than or equal to Pr. 13 Starting frequency.}

\hline \& \multicolumn{2}{|l|}{\multirow{3}{*}{11}} \& \multirow[t]{3}{*}{DC injection brake operation time} \& \multirow{3}{*}{0.1s} \& \multirow{3}{*}{0.5s} \& 0 \& \multicolumn{2}{|l|}{DC injection brake disabled}

\hline \& \& \& \& \& \& 0.1 to 10s \& \multicolumn{2}{|l|}{Operation time of the DC injection brake}

\hline \& \& \& \& \& \& 8888 \& \multicolumn{2}{|l|}{Operated while the X13 signal is on.}

\hline \& \multirow{7}{*}{12} \& \& \multirow[b]{2}{*}{DC injection brake operation voltage} \& \multirow[b]{2}{*}{0.1\%} \& \multirow[b]{2}{*}{4/2\% *} \& 0 \& \multicolumn{2}{|l|}{DC injection brake disabled}

\hline \& \& \& \& \& \& 0.1 to 30\% \& DC injection brake * The initial value capacity. (7.5K or \& (torque) according to the inverter K or higher)

\hline \& \& \multirow[t]{2}{*}{02} \& \multirow[t]{2}{*}{Pre-excitation selection} \& \multirow[t]{2}{*}{1} \& \multirow[t]{2}{*}{0} \& 0 \& Zero speed control \& \multirow[t]{2}{*}{Setting can be made under vector control.}

\hline \& \& \& \& \& \& 1 \& Servo lock \&

\hline \& \& \multirow{3}{*}{850} \& \multirow{3}{*}{Brake operation selection} \& \multirow{3}{*}{1} \& \multirow{3}{*}{0} \& 0 \& \multicolumn{2}{|l|}{DC injection brake}

\hline \& \& \& \& \& \& 1 \& \multicolumn{2}{|l|}{Zero speed control (under Real sensorless vector control)}

\hline \& \& \& \& \& \& 2 \& \multicolumn{2}{|l|}{Magnetic flux decay output shutoff (under Real sensorless vector control)}

\hline \multirow[t]{3}{*}{} \& \multicolumn{2}{|l|}{\multirow[t]{3}{*}{13 ¢}} \& Starting frequency \& 0.01 Hz \& 0.5 Hz \& 0 to 60 Hz \& Starting frequency \&

\hline \& \& \& \multirow{2}{*}{Holding time at a start} \& \multirow{2}{*}{0.1s} \& \multirow{2}{*}{9999} \& 0.0 to 10.0s \& \multicolumn{2}{|l|}{Holding time of Pr. 13 Starting frequency.}

\hline \& \& \& \& \& \& 9999 \& \multicolumn{2}{|l|}{Holding function at a start is invalid}

\hline
\end{tabular}

$\begin{aligned} & \text { 들 } \\ & \text { 을 } \\ & \text { 들 } \end{aligned}$	Parameter	Name	Incre ments	Initial Value	Range	Description	
	14	Load pattern selection	1	0	0	For constant-torque loa	
					1	For variable-torque load	
					2	For constant-torque lift	Boost for reverse rotation 0\%
					3		Boost for forward rotation 0\%
					4	```RT signal ON For constant-torque load (Same as in setting 0) RT signal OFF .. For constant-torque lift Boost for reverse rotation 0\% (Same as in setting 2)```	
					5	RT signal ON For constant-torque load (Same asin setting 0)RT signal OFF .. For constant-torque liftBoost for forward rotation 0% (Same as in setting 3)(Sater	
	15	Jog frequency	0.01Hz	5Hz	0 to 400 Hz	Set the frequency for jog operation.	
	16	Jog acceleration/ deceleration time	$\begin{gathered} 0.1 / \\ 0.01 \mathrm{~s} \end{gathered}$	0.5s	$\begin{aligned} & 0 \text { to } 3600 / \\ & 360 \mathrm{~s} \end{aligned}$	Set the acceleration/deceleration time for jog operation. Set the time taken to reach the frequency set in Pr. 20 Acceleration/deceleration reference frequency for acceleration/deceleration time. (Initial value is 60 Hz) In addition, acceleration/deceleration time can not be set separately.	
	17	MRS input selection	1	0	0	Open input always	
					2	Normally closed input (NC contact input specifications)	
					4	External terminal:Normally closed input (NC contact input specifications) Communication:Normally open input	
-	18	Refer to Pr. 1 and Pr. 2.					
	19	Refer to Pr. 3.					
	20, 21	Refer to Pr. 7 and Pr. 8.					

$\begin{aligned} & \text { 들 } \\ & \text { 흘 } \\ & \text { 들 } \end{aligned}$			Name	Incre ments	Initial Value	Range	Description					
\qquad	22					0	Stall prevention operatio	selection becomes invalid.				
			Stall prevention operation level	0.1\%	150\%	0.1 to 400\%	Function as stall preventio control and Advanced ma Set the current value at w operation is started. Refer to page 107 for torq	n operation under V/F gnetic flux vector control. ich stall prevention e limit level.				
	23	48	Stall prevention operation level compensation factor	0.1\%	9999	0 to 200\%	The stall operation level can be reduced when operating at a high speed above the rated frequency.					
			at double speed			9999	Constant according to Pr.					
			Second stall prevention	0.1\%	150\%	0	Second stall prevention operation invalid					
			operation current			0.1 to 220\%	The stall prevention ope	tion level can be set.				
		49	Second stall prevention operation frequency	0.01 Hz	OHz	0	Second stall prevention operation invalid					
						$\begin{aligned} & 0.01 \text { to } \\ & 400 \mathrm{~Hz} \end{aligned}$	Set the frequency at which stall prevention operation of Pr. 48 is started.					
						9999	Pr. 48 is valid when the RT signal is on.					
		66	Stall prevention operation reduction starting frequency	0.01 Hz	60 Hz	0 to 400 Hz	Set the frequency at whic started to reduce.	the stall operation level is				
		114	Third stall prevention operation current	0.1\%	150\%	0	Third stall prevention operation invalid					
						$\begin{aligned} & 0.1 \text { to } \\ & 220 \% \end{aligned}$	The stall prevention operation level can be set.					
		115	Third stall prevention operation frequency	0.01 Hz	0	0	Third stall prevention operation invalid					
						$\begin{aligned} & 0.01 \text { to } \\ & 400 \mathrm{~Hz} \end{aligned}$	Set the frequency at which stall prevention operation of Pr. 114 is started.					
		148	Stall prevention level at 0V input	0.1\%	150\%	0 to 220\%	When "4" is set in Pr. 868 (Pr. 858), stall prevention operation level can be changed by the analog signal input to terminal 1 (terminal 4).					
		149	Stall prevention level at 10V input	0.1\%	200\%	0 to 220\%						
		154	Voltage reduction selection during stall prevention operation	1	1	0	With voltage reduction	You can select whether to use output voltage reduction during stall prevention operation or not.				
						1	Without voltage reduction					
		156	Stall prevention operation selection	1	0	$\begin{aligned} & 0 \text { to } 31, \\ & 100,101 \end{aligned}$	Pr. 156 allows you to select whether to use stall prevention or not according to the acceleration/ deceleration status.					
		157	OL signal output timer	0.1 s	Os	0 to 25s	Set the output start time of the OL signal output when stall prevention is activated.					
						9999	Without the OL signal output					
		858	Terminal 4 function assignment	Refer to page 137.								
		868	Terminal 1 function assignment									

	Param		Name	Incre ments	Initial Value	Range	Descri	iption
	29		Acceleration/deceleration pattern selection	1	0	0	Linear acceleration/ deceleration	
						1	S-pattern acceleration/deceleration A	
						2	S-pattern acceleration/deceleration B	
						3	Backlash measures	
						4	S-pattern acceleration/deceleration C	
						5	S-pattern acceleration/deceleration D	
		140	Backlash acceleration stopping frequency	0.01 Hz	1 Hz	0 to 400 Hz	Set the stopping frequency and time for backlash measures. Valid when Pr. $29=$ " 3 "	
		141	Backlash acceleration stopping time	0.1 s	0.5s	0 to 360s		
		142	Backlash deceleration stopping frequency	0.01 Hz	1 Hz	0 to 400 Hz		
		143	Backlash deceleration stopping time	0.1 s	0.5s	0 to 360s		
		380	Acceleration S-pattern 1	1\%	0\%	0 to 50\%	Valid when S-pattern acceleration/deceleration C (Pr. $29=4$) is set.	
		381	Deceleration S-pattern 1	1\%	0\%	0 to 50\%	Set the time taken for S-pattern from starting of acceleration/deceleration to linear acceleration as \% to the acceleration/deceleration time (Pr. 7, Pr. 8, etc.) An acceleration/deceleration pattern can be changed with the X 20 signal.	
		382	Acceleration S-pattern 2	1\%	0\%	0 to 50\%		
		383	Deceleration S-pattern 2	1\%	0\%	0 to 50\%		
		516	S-pattern time at a start of acceleration	0.1 s	0.1s	0.1 to 2.5 s	Valid when S-pattern acceleration/deceleration D (Pr. $29=5)$ is set. Set the time taken for S-pattern acceleration/ deceleration (S-pattern operation).	
		517	S-pattern time at a completion of acceleration	0.1 s	0.1 s	0.1 to 2.5 s		
		518	S-pattern time at a start of deceleration	0.1 s	0.1 s	0.1 to 2.5 s		
		519	S-pattern time at a completion of deceleration	0.1s	0.1 s	0.1 to 2.5 s		
	31		Frequency jump 1A	0.01 Hz	9999	$\begin{aligned} & 0 \text { to } 400 \mathrm{~Hz}, \\ & 9999 \end{aligned}$	$1 A$ to $1 B, 2 A$ to $2 B, 3 A$ to $3 B$ is frequency jumps 9999: Function invalid	
	32		Frequency jump 1B	0.01 Hz	9999	$\begin{aligned} & 0 \text { to } 400 \mathrm{~Hz}, \\ & 9999 \end{aligned}$		
	33		Frequency jump 2A	0.01 Hz	9999	$\begin{aligned} & 0 \text { to } 400 \mathrm{~Hz}, \\ & 9999 \end{aligned}$		
	34		Frequency jump 2B	0.01 Hz	9999	$\begin{aligned} & \mathrm{O} \text { to } 400 \mathrm{~Hz}, \\ & 9999 \end{aligned}$		
	35		Frequency jump 3A	0.01 Hz	9999	$\begin{aligned} & 0 \text { to } 400 \mathrm{~Hz}, \\ & 9999 \end{aligned}$		
	36		Frequency jump 3B	0.01 Hz	9999	$\begin{aligned} & 0 \text { to } 400 \mathrm{~Hz}, \\ & 9999 \end{aligned}$		
	37			1	0	0	Frequency display, setting	
			S			1 to 9998	Set the machine speed for Pr. 505 Set frequency.	
		144	Speed setting switchover	1	4	$\begin{aligned} & \hline 0,2,4,6, \\ & 8,10,102, \\ & 104,106, \\ & 108,110 \end{aligned}$	Set the number of motor poles when displaying themotor speed.A setting value is automatically changed dependingon the Pr. 81 setting.	
		505	Speed setting reference	0.01 Hz	60 Hz	1 to 120 Hz	Set the frequency that will be the basis of machine speed display.	
		811	Easy gain tuning response level setting	1	0	0	Running speed increments	Torque limit increments
							$1 \mathrm{r} / \mathrm{min}$	0.1\% increments
						1	$0.1 \mathrm{r} / \mathrm{min}$	
						10	1r/min	0.01\% increments
						11		

	Parameter	Name	Incre ments	Initial Value	Range	Description
	41	Up-to-frequency sensitivity	0.1\%	10\%	0 to 100\%	Set the level where the SU signal turns on.
	42	Output frequency detection	0.01 Hz	6 Hz	0 to 400 Hz	Set the frequency where the FU (FB) signal turns on.
	43	Output frequency detection for reverse rotation	0.01 Hz	9999	0 to 400 Hz	Set the frequency where the FU (FB) signal turns on in reverse rotation.
					9999	Same as Pr. 42 setting
	50	Second output frequency detection	0.01 Hz	30Hz	0 to 400 Hz	Set the frequency where the FU2 (FB2) signal turns on.
	116	Third output frequency detection	0.01 Hz	60Hz	0 to 400 Hz	Set the frequency where the FU3 (FB3) signal turns on.
	865	Low speed detection	0.01 Hz	1.5Hz	0 to 400 Hz	Set the frequency where the LS signal turns on.
	44, 45	Refer to Pr. 7 and Pr. 8.				
	46	Refer to Pr. 0.				
	47	Refer to Pr. 3.				
	48, 49	Refer to Pr. 22 and Pr. 23.				
	50	Refer to Pr. 41 to Pr. 43.				
	51	Refer to Pr. 9.				

	Parameter	Name	Incre ments	Initial Value	Range	Description	
	61	Reference current	0.01A	9999	0 to 500A	Setting value (rated motor current) is referenced	
					9999	Rated inverter current is referenced	
	62	Reference value at acceleration	0.1\%	9999	0 to 220\%	Setting value is a limit value	Shortest acceleration/ deceleration mode
						Setting value is an optimum value	Optimum acceleration/ deceleration mode
					9999	150% is a limit value	Shortest acceleration/ deceleration mode
						100\% is an optimum value	Optimum acceleration/ deceleration mode
	63	Reference value at deceleration	0.1\%	9999	0 to 220\%	Setting value is a limit value	Shortest acceleration/ deceleration mode
						Setting value is an optimum value	Optimum acceleration/ deceleration mode
					9999	150% is a limit value	Shortest acceleration/ deceleration mode
						100\% is an optimum value	Optimum acceleration/ deceleration mode
	64	Starting frequency for elevator mode	0.01Hz	9999	0 to 10 Hz	0 to 10 Hz are starting frequency	
					9999	2 Hz is starting frequency	
	292	Automatic acceleration/ deceleration	1	0	0	Normal mode	
					3	Optimum acceleration/deceleration mode	
					5	Elevator mode 1	
					6	Elevator mode 2	
					7	Brake sequence mode 1	
					8	Brake sequence mode 2	
					11	Shortest acceleration/deceleration mode	
		Acceleration/deceleration separate selection	1	0	0	Calculate acceleration/deceleration time of both acceleration and deceleration for the shortest and optimum acceleration/deceleration mode.	
	293				1	Calculate only acceleration time for the shortest and optimum acceleration/deceleration mode	
					2	Calculate only deceleration time for the shortest and optimum acceleration/deceleration mode	
$\begin{aligned} & \text { Retry function at alarm } \\ & \text { occurrence } \end{aligned}$	65	Retry selection	1	0	0 to 5	A fault for retry can be selected.	
	67	Number of retries at fault occurrence	1	0	0	No retry function	
					1 to 10	Set the number of retries at fault occurrence. A fault output is not provided during retry operation.	
					101 to 110	Set the number of retries at fault occurrence. (The setting value -100 is the number of retries.) A fault output is provided during retry operation.	
	68	Retry waiting time	0.1 s	1s	0 to 10s	Set the waiting time from when an inverter fault occurs until a retry is made.	
	69	Retry count display erase	1	0	0	Clears the number of restarts succeeded by retry.	
-	66	Refer to Pr. 22 and Pr. 23.					
	67 to 69	Refer to Pr. 65.					

Parameter List

$\begin{aligned} & \text { 들 } \\ & \text { 을 } \\ & \text { 들 } \end{aligned}$	Para		Name	Incre ments	Initial Value	Range		ption	
	73		Analog input selection	1	1	$\begin{aligned} & 0 \text { to } 7, \\ & 10 \text { to } 17 \end{aligned}$	You can select the (0 to $5 \mathrm{~V}, 0$ to 10 V, of terminal 1 (0 to To change the ter specification (0 to status) the voltag it to the current in voltage/current in Override and rever	pecifications of terminal 2 A) and input specifications $\pm 10 \mathrm{~V}$). the voltage input 10V), turn OFF (initial input switch 2. To change 20 mA), turn ON the 2. eration can be selected.	
		242	Terminal 1 added compensation amount (terminal 2)	0.1\%	100\%	0 to 100\%	Set the ratio of terminal 2 is the	ensation amount when d.	
		243	Terminal 1 added compensation amount (terminal 4)	0.1\%	75\%	0 to 100\%	Set the ratio of terminal 4 is the	ensation amount when d.	
		252	Override bias	0.1\%	50\%	0 to 200\%	Set the bias sid function.	ation value of override	
		253	Override gain	0.1\%	150\%	0 to 200\%	Set the gain side function.	ation value of override	
		267	Terminal 4 input selection	1	0	0	Terminal 4 input 4 to 20 mA	Turn ON the voltage/ current input switch 1(initial status).	
						1	$\begin{aligned} & \text { Terminal } 4 \text { input } \\ & 0 \text { to } 5 \mathrm{~V} \end{aligned}$	Turn OFF the voltage/ current input switch 1.	
						2	$\begin{aligned} & \text { Terminal } 4 \text { input } \\ & 0 \text { to } 10 \mathrm{~V} \end{aligned}$		
	74		Input filter time constant	1	1	0 to 8	The primary delay filter time constant for the analog input can be set. A larger setting results slower response.		
		822	Speed setting filter 1	0.001s	9999	0 to 5 s , 9999	Set the time constant of the primary delay filter relative to the external speed command (analog input command).		
		826	Torque setting filter 1	0.001s	9999	$\begin{aligned} & 0 \text { to } 5 \mathrm{~s}, \\ & 9999 \end{aligned}$	Set the time constant of the primary delay filter relative to the external torque command (analog input command).		
		832	Speed setting filter 2	0.001s	9999	$\begin{aligned} & 0 \text { to 5s, } \\ & 9999 \end{aligned}$	Second function of Pr. 822 (valid when the RT terminal is on)		
		836	Torque setting filter 2	0.001s	9999	$\begin{aligned} & 0 \text { to } 5 \mathrm{~s}, \\ & 9999 \end{aligned}$	Second function of Pr. 826 (valid when the RT terminal is on)		
		849	Analog input offset adjustment	0.1\%	100\%	0 to 200\%	This function provides speed command by analog input (terminal 2) with offset and avoids frequency command to be given due to noise under 0 speed command.		
	75		Reset selection/ disconnected PU detection/ PU stop selection	1	14	$\begin{aligned} & 0 \text { to } 3, \\ & 14 \text { to } 17 \end{aligned}$	You can select the reset input acceptance, disconnected PU (FR-DU07/FR-PU07/FR-PU04) connector detection function and PU stop function. For the initial value, reset always enabled, without disconnected PU detection, and with PU stop function are set.		
	76		Fault code output selection	1	0	0	Without fault code output		
			1			With fault code output			
			2			Fault code output at fault occurrence only			
	77			Parameter write selection	1	0	0	Write is enabled only during a stop	
							1	Parameter write is disabled.	
			2				Parameter write is enabled in any operation mode regardless of operating status.		
	78		Reverse rotation prevention selection	1	0	0	Both forward and reverse rotations allowed		
			1			Reverse rotation disallowed			
			2			Forward rotation disallowed			

$\begin{aligned} & \text { 들 } \\ & \text { 을 } \\ & \text { 들 } \end{aligned}$	Param		Name	Incre ments	Initial Value	Range	Description		
	79	(-)	Operation mode selection	1	0	0	External/PU switchover mode		
						1	Fixed to PU operation mode		
						2	Fixed to External operation mode		
						3	External/PU combined operation mode 1		
						4	External/PU combined operation mode 2		
						6	Switchover mode		
						7	External operation mode (PU operation interlock)		
		340	Communication startup mode selection	1	0	0	As set in Pr. 79.		
						1, 2	Started in the network operation mode. When the setting is "2", it will resume the preinstantaneous power failure operation mode after an instantaneous power failure occurs.		
						10, 12	Started in the network operation mode. Operation mode can be changed between PU operation mode and network operation mode from the operation panel. When the setting is " 12 ", it will resume the preinstantaneous power failure operation mode after an instantaneous power failure occurs.		
	80		Motor capacity	0.01 kW	9999	0.4 to 55 kW	Set the applied motor capacity.		
			9999			V/F control is performed			
	81			Number of motor poles	1	9999	2, 4, 6, 8, 10	Set the number of motor poles.	
			$\begin{aligned} & \hline 12,14,16, \\ & 18,20 \\ & \hline \end{aligned}$				X18 signal-ON:V/F control	Set 10 + number of motor poles.	
			9999				V/F control is performed		
	89		Speed control gain (magnetic flux vector)	0.1\%	9999	0 to 200\%	Motor speed fluctuation due to load fluctuation is adjusted during Advanced magnetic flux vector control. 100% is a referenced value.		
						9999	Gain matching with the motor set in Pr.71.		
	451		Second motor control method selection	1	9999	10, 11, 12	Select the method of controlling the second motor. (same as Pr.800)		
			20,9999			V/F Control (Advanced magnetic flux vector control)			
	453			Second motor capacity	0.01 kW	9999	0.4 to 55 kW	Set the capacity of the second motor.	
			9999				V/F control is performed		
	454		Number of second motor poles	1	9999	2, 4, 6, 8, 10	Set the number of poles of the second motor.		
			9999			V/F control is performed			
	569			Second motor speed control gain	0.1\%	9999	0 to 200\%	Second motor speed fluctuation due to load fluctuation is adjusted during Advanced magnetic flux vector control. 100% is a referenced value.	
			9999				Gain matching with the motor set in Pr. 450.		
		800	Control method selection	1	20	0	Speed control	Vector control (FR-A7AP/FR-A7AL)	
						1	Torque control		
						2	MC signal-ON:torque MC signal-OFF:speed		
						3	Position control		
						4	MC signal-ON:position MC signal-OFF:speed		
						5	MC signal-ON:torque MC signal-OFF:position		
						9	Vector control test operation Test operation of vector control (speed control) can be performed without connecting a motor.		
						10	Speed control	Real sensorless vector control	
						11	Torque control		
						12	MC signal-ON : Torque MC signal-OFF : Speed		
						20	V/F Control (Advanced magnetic flux vector control)		

$\begin{aligned} & \text { 들 } \\ & \text { 을 } \\ & \frac{1}{3} \\ & \hline 1 \end{aligned}$	Parameter 	Name	Incre ments	Initial Value	Range	Description
	458	Second motor constant (R1)	0.001Ω	9999	0 to 50Ω	Tuning data of the second motor (The value measured by offline auto tuning is automatically set.)
					9999	Use the Mitsubishi motor (SF-JR, SF-HR, SF-JRCA, SF-HRCA, SF-V5RU (1500r/min series)) constants
	459	Second motor constant (R2)	0.001Ω	9999	0 to 50Ω	Tuning data of the second motor (The value measured by offline auto tuning is automatically set.)
					9999	Use the Mitsubishi motor (SF-JR, SF-HR, SF-JRCA, SF-HRCA, SF-V5RU (1500r/min series)) constants
	460	Second motor constant (L1)	$\begin{array}{\|c\|} \hline 0.001 \Omega \\ (0.1 \mathrm{mH}) \end{array}$	9999	0 to $50 \Omega(0$ to 1000 mH)	Tuning data of the second motor (The value measured by offline auto tuning is automatically set.)
					9999	Use the Mitsubishi motor (SF-JR, SF-HR, SF-JRCA, SF-HRCA, SF-V5RU (1500r/min series)) constants
	461	Second motor constant (L2)	$\begin{array}{\|c\|} \hline 0.001 \Omega \\ (0.1 \mathrm{mH}) \end{array}$	9999	0 to $50 \Omega(0$ to 1000 mH)	Tuning data of the second motor (The value measured by offline auto tuning is automatically set.)
					9999	Use the Mitsubishi motor (SF-JR, SF-HR, SF-JRCA, SF-HRCA, SF-V5RU (1500r/min series)) constants
	462	Second motor constant (X)	$\begin{aligned} & 0.01 \Omega \\ & (0.1 \%) \end{aligned}$	9999	0 to 500Ω (0 to 100\%)	Tuning data of the second motor (The value measured by offline auto tuning is automatically set.)
					9999	Use the Mitsubishi motor (SF-JR, SF-HR, SF-JRCA, SF-HRCA, SF-V5RU (1500r/min series)) constants
	463	Second motor auto tuning setting/status	1	0	0, 1, 101	Set the tuning mode of the second motor. (same as Pr. 96)
	684	Tuning data unit switchover	1	0	0	Internal data converter value
	684				1	Displayed in "A, Ω, mH, \%".
	859	Torque current	0.01A	9999	0 to 500A	Tuning data (The value measured by offline auto tuning is automatically set.)
					9999	Use the Mitsubishi motor (SF-JR, SF-HR, SF-JRCA, SF-HRCA, SF-V5RU (1500r/min series)) constants
	860	Second motor torque current	0.01A	9999	0 to 500A	Tuning data of the second motor (The value measured by offline auto tuning is automatically set.)
					9999	Use the Mitsubishi motor (SF-JR, SF-HR, SF-JRCA, SF-HRCA, SF-V5RU ($1500 \mathrm{r} / \mathrm{min}$ series)) constants
-	89	Refer to Pr. 81.				
	90 to 94	Refer to Pr. 82 to Pr. 84.				
	95	Online auto tuning selection	1	0	0	Online auto tuning is not performed
					1	Start-time tuning (at start-up)
					2	Magnetic flux observer (normal)
	574	Second motor online auto tuning	1	0	0, 1	Select the second motor online auto tuning. (same as Pr. 95)
-	96	Refer to Pr. 82 to Pr. 84.				

	Parameter 	Name	Incre ments	Initial Value	Range	Description
	100	V/F1 (first frequency)	0.01 Hz	9999	$\begin{aligned} & \text { 0 to } 400 \mathrm{~Hz}, \\ & 9999 \end{aligned}$	Set each points (frequency, voltage) of V/F pattern. 9999: No V/F setting
	101	V/F1(first frequency voltage)	0.1 V	OV	0 to 1000V	
	102	V/F2(second frequency)	0.01 Hz	9999	$\begin{aligned} & \hline 0 \text { to } 400 \mathrm{~Hz}, \\ & 9999 \end{aligned}$	
	103	V/F2(second frequency voltage)	0.1 V	OV	0 to 1000 V	
	104	V/F3(third frequency)	0.01 Hz	9999	$\begin{aligned} & \text { 0 to } 400 \mathrm{~Hz}, \\ & 9999 \end{aligned}$	
	105	V/F3(third frequency voltage)	0.1 V	OV	0 to 1000V	
	106	V/F4(fourth frequency)	0.01 Hz	9999	$\begin{aligned} & \hline 0 \text { to } 400 \mathrm{~Hz}, \\ & 9999 \end{aligned}$	
	107	V/F4(fourth frequency voltage)	0.1 V	OV	0 to 1000 V	
	108	V/F5(fifth frequency)	0.01 Hz	9999	$\begin{aligned} & 0 \text { to } 400 \mathrm{~Hz}, \\ & 9999 \end{aligned}$	
	109	V/F5(fifth frequency voltage)	0.1 V	OV	0 to 1000V	
	71	Refer to page 113.				
-	110, 111	Refer to Pr. 7.				
	112	Refer to Pr. 0.				
	113	Refer to Pr. 3.				
	114, 115	Refer to Pr. 22.				
	116	Refer to Pr. 41.				

$\begin{aligned} & \text { 들 } \\ & \text { 을 } \\ & \text { 들 } \end{aligned}$	Para		Name	Incre ments	Initial Value	Range	Description	
	117		PU communication station number	1	0	0 to 31	Specify the inverter station number. Set the inverter station numbers when two or more inverters are connected to one personal computer.	
	118		PU communication speed	1	192	$\begin{aligned} & 48,96,192, \\ & 384 \end{aligned}$	Set the communication speed. The setting value $\times 100$ equals the communication speed. For example, the communication speed is 19200bps when the setting value is "192".	
	119		PU communication stop bit length	1	1	0	Stop bit length: 1 bit data length: 8bit	
			1			Stop bit length: 2bit data length: 8bit		
			10			Stop bit length: 1bit data length: 7bit		
			11			Stop bit length: 2bit data length: 7bit		
	120			PU communication parity check	1	2	0	Without parity check
			1				With odd parity check	
			2				With even parity check	
	121			Number of PU communication retries	1	1	0 to 10	Set the permissible number of retries at occurrence of a data receive error. If the number of consecutive errors exceeds the permissible value, the inverter trips.
							9999	If a communication error occurs, the inverter will not come to trip.
	122		PU communication check time interval	0.1 s	9999	0	No PU connector communication	
						0.1 to 999.8s	Set the communication check time interval. If a no-communication state persists for longer than the permissible time, the inverter trips.	
						9999	No communication check (signal loss detection)	
	123		PU communication waiting time setting	1	9999	0 to 150ms	Set the waiting time between data transmission to the inverter and response.	
						9999	Set with communication data.	
	124		PU communication CR/LF selection	1	1	0	Without CR/LF	
						1	With CR	
						2	With CR/LF	
		342	Communication EEPROM write selection	1	0	0	Parameter values written by communication are written to the EEPROM and RAM.	
						1	Parameter values written by communication are written to the RAM.	
		551	PU mode operation command source selection	1	2	1	Select the RS-485 terminals as PU operation mode control source.	
						2	Select the PU connector as PU operation mode control source.	
						3	Select the USB connector as PU operation mode control source.	
	125		Terminal 2 frequency setting gain frequency	0.01 Hz	60 Hz	0 to 400 Hz	Set the frequency of terminal 2 input gain (maximum).	
	126	(0)	Terminal 4 frequency setting gain frequency	0.01 Hz	60 Hz	0 to 400 Hz	Set the frequency of terminal 4 input gain (maximum). (Valid when Pr. $858=0$ (initial value))	
		241	Analog input display unit switchover	1	0	0	Displayed in \% \quad Select the unit for analog	
						1	Displayed in V/mA \quad input display.	
		$\begin{array}{\|c\|} \hline \text { C2 } \\ (902) \\ \hline \end{array}$	Terminal 2 frequency setting bias frequency	0.01 Hz	0Hz	0 to 400 Hz	Set the frequency on the bias side of terminal 2 input.	
		$\begin{array}{\|c\|} \hline \text { C3 } \\ \text { (902) } \\ \hline \end{array}$	Terminal 2 frequency setting bias	0.1\%	0\%	0 to 300\%	Set the converted \% of the bias side voltage (current) of terminal 2 input.	
		$\begin{array}{c\|} \hline C 4 \\ (903) \end{array}$	Terminal 2 frequency setting gain	0.1\%	100\%	0 to 300\%	Set the converted \% of the gain side voltage of terminal 2 input.	
		$\begin{gathered} \hline \text { C5 } \\ \text { (904) } \end{gathered}$	Terminal 4 frequency setting bias frequency	0.01 Hz	0Hz	0 to 400 Hz	Set the frequency on the bias side of terminal 4 input. (Valid when Pr. $858=0$ (initial value))	
		$\left.\begin{gathered} C 6 \\ (904) \end{gathered} \right\rvert\,$	Terminal 4 frequency setting bias	0.1\%	20\%	0 to 300\%	Set the converted \% of the bias side current (voltage) of terminal 4 input. (Valid when Pr. $858=0$ (initial value))	
		$\begin{gathered} C 7 \\ (905) \end{gathered}$	Terminal 4 frequency setting gain	0.1\%	100\%	0 to 300\%	Set the converted \% of the gain side current (voltage) of terminal 4 input. (Valid when Pr. $858=0$ (initial value))	

The parameter number in parentheses is the one for use with the parameter unit (FR-PU04/FR-PU07).

$\begin{aligned} & \text { 들 } \\ & \text { 을 } \\ & \frac{1}{3} \\ & \hline 1 \end{aligned}$	Parameter 	Name	Incre ments	Initial Value	Range	Description
	135	Electronic bypass sequence selection	1	0	0	Without electronic bypass sequence
					1	With electronic bypass sequence
	136	MC switchover interlock time	0．1s	1s	0 to 100s	Set the operation interlock time of MC2 and MC3．
	137	Start waiting time	0.1 s	0.5 s	0 to 100s	Set the time slightly longer（ 0.3 to 0.5 s or so）than the time from when the ON signal enters MC3 until it actually turns on．
	138	Bypass selection at a fault	1	0	0	Inverter output is stopped（motor coast）at inverter fault．
					1	Operation is automatically switched to bypass operation at inverter fault （Not switched when an external thermal relay operation（E．OHT）or CPU fault（E．CPU）occurs）
	139	Automatic switchover frequency from inverter to bypass operation	0.01 Hz	9999	0 to 60Hz	Set the frequency to switch inverter operation to bypass operation．
					9999	Without automatic switchover
	159	Automatic switchover frequency range from bypass to inverter operation	0.01 Hz	9999	0 to 10 Hz	Valid during automatic switchover operation（Pr． $139 \neq$ 9999） When the frequency command decreases below（Pr． 139 －Pr．159）after operation is switched from inverter operation to bypass operation，the inverter automatically switches operation to inverter operation and operates at the frequency of frequency command． When the inverter start command（STF／STR）is turned OFF，operation is switched to inverter operation also．
					9999	Valid during automatic switchover operation（Pr．139 \neq 9999） When the inverter start command（STF／STR）is turned OFF after operation is switched from inverter operation to bypass operation，operation is switched to inverter operation and the motor decelerates to stop．
－	140 to 143	Refer to Pr． 29.				
	144	Refer to Pr． 37.				
	145	PU display language selection	1	0	0	Japanese
					1	English
					2	Germany
					3	French
					4	Spanish
					5	Italian
					6	Swedish
					7	Finnish
－	148，149	Refer to Pr． 22.				
	150	Output current detection level	0．1\％	150\％	0 to 220\％	Set the output current detection level． 100% is the rated inverter current．
	151	Output current detection signal delay time	0.1 s	Os	0 to 10s	Set the output current detection period． Set the time from when the output current has risen above the setting until the output current detection signal（Y12）is output．
	152	Zero current detection level	0．1\％	5\％	0 to 220\％	Set the zero current detection level． Suppose that the rated inverter current is 100% ．
	153	Zero current detection time	0．01s	0.5 s	0 to 1s	Set this parameter to define the period from when the output current drops below the Pr． 152 value until the zero current detection signal（Y13）is output．
		Output current detection signal retention time	0.1 s	0.1 s	0 to 10s	Set the retention time when the Y12 signal is on．
					9999	The Y12 signal on status is retained． The signal is turned OFF at the next start．
		Output current detection operation selection	1	0	0	Operation continues when the Y12 signal is on
					1	The inverter trips when the Y12 signal is on．（E．CDO）
－	154	Refer to Pr． 22.				

Parameter List

	Parameter 	Name	Incre ments	Initial Value	Range	Description
	178	STF terminal function selection	1	60	0 to 9, 12 to 20, 22 to 28, 42 to 44,60, 62,64 to 69, 74,9999	Low-speed operation command (RL) Middle-speed operation command (RM) High-speed operation command (RH) Second function selection (RT) Terminal 4 input selection (AU) Jog operation selection (JOG)
	179	STR terminal function selection	1	61	0 to 9, 12 to 20, 22 to 28, 42 to 44,61, 62,64 to 69, 74,9999	6: Selection of automatic restart after instantaneous power failure, flying start (CS) 7: External thermal relay input (OH) 8: 15-speed selection (REX) 9: Third function (X9) 12: PU operation external interlock (X12)
	180	RL terminal function selection	1	0	$\begin{aligned} & 0 \text { to } 9, \\ & 12 \text { to } 20, \\ & 22 \text { to } 28, \\ & 42 \text { to } 44,62, \\ & 64 \text { to } 69,74, \\ & 9999 \end{aligned}$	13: External DC injection brake start (X13) 14: PID control valid terminal (X14) 15: Brake opening completion signal (BRI) 16: PU/External operation switchover (X16) 17: Load pattern selection forward/reverse rotation boost (X17) 18: V/F switchover (X18) 19: Load torque high-speed frequency (X19) 20: S-pattern acceleration/deceleration C switching terminal (X20)
	181	RM terminal function selection	1	1		
	182	RH terminal function selection	1	2		
	183	RT terminal function selection	1	3		
	184	AU terminal function selection	1	4	0 to 9, 12 to 20, 22 to 28, 42 to 44, 62 to 69,74, 9999	terminal (X20) 22: Orientation command (X22) 23: Pre-excitation (LX) 24: Output stop (MRS) 25: Start self-holding selection (STOP) 26: Control mode changing (MC)
	185	JOG terminal function selection	1	5	0 to 9 , 12 to 20, 22 to 28 , 42 to 44, 62, 64 to 69,74 , 9999	27: Torque limit selection (TL) 28: Start time tuning (X28) 42: Torque bias selection 1 (X42) * 43: Torque bias selection 2 (X43) * 44: P/PI control switchover (X44) 60: Forward rotation command (STF) (assigned to STF terminal (Pr. 178) only) 61: Reverse rotation command (STR) (assigned to STR terminal (Pr. 179) only) 62: Inverter reset (RES) 63: PTC thermistor input (PTC) (assigned to AU terminal (Pr. 184) only) 64: PID forward/reverse action switchover (X64) 65: PU/NET operation switchover (X65) 66: External/NET operation switchover (X66) 67: Command source switchover (X67) 68: Simple position pulse train sign (NP) * 69: Simple position droop pulse clear (CLR) * 74: Magnetic flux decay output shutoff (X74) 9999:No function * Available only when used with the FR-A7AP/FR-A7AL (option).
	186	CS terminal function selection	1	6		
	187	MRS terminal function selection	1	24		
	188	STOP terminal function selection	1	25		
	189	RES terminal function selection	1	62		

¹0 ¢0 ¢ L	Parameter	Name	Incre ments	Initial Value	Range		iption	
	261	Power failure stop selection	1	0	0	Coasting to stop When undervoltage or power failure occurs, the inverter output is shut off.		
					1	Without UV avoidance	When undervoltage or a power failure occurs, the inverter can be decelerated to a stop.	
					11	With UV avoidance		
					2	Without UV avoidance	When undervoltage or a power failure occurs, the inverter can be decelerated to a stop. If power is restored during a power failure, the inverter accelerates again.	
					12	With UV avoidance		
	262	Subtracted frequency at deceleration start	0.01 Hz	3 Hz	0 to 20 Hz	Normally operation can be performed with the initial value unchanged. But adjust the frequency according to the magnitude of the load specifications (moment of inertia, torque).		
	263	Subtraction starting frequency	0.01 Hz	60Hz	0 to 120 Hz	Decelerate from the speed obtained from output frequency - Pr. 262. When output frequency < Pr. 263 Decelerate from output frequency		
					9999	Decelerate from the speed obtained from output frequency - Pr. 262.		
	264	Power-failure deceleration time 1	$\begin{gathered} \hline 0.1 / \\ 0.01 \mathrm{~s} \end{gathered}$	5s	$\begin{array}{\|l\|} \hline 0 \text { to } 3600 / \\ 360 \mathrm{~s} \end{array}$	Set a deceleration slope down to the frequency set in Pr. 266.		
	265	Power-failure deceleration time 2	$\begin{gathered} 0.1 / \\ 0.01 \mathrm{~s} \end{gathered}$	9999	$\begin{aligned} & \hline 0 \text { to } 3600 / \\ & 360 \mathrm{~s} \\ & \hline \end{aligned}$	Set a deceleration slope below the frequency set in Pr. 266.		
					9999	Same slope as in Pr. 264		
	266	Power failure deceleration time switchover frequency	0.01 Hz	60Hz	0 to 400 Hz	Set the frequency at which the deceleration slope is switched from the Pr. 264 setting to the Pr. 265 setting.		
	294	UV avoidance voltage gain	0.1\%	100\%	0 to 200\%	Adjust response level at UV avoidance operation. A larger setting will improve responsiveness to the bus voltage change.		
-	267	Refer to Pr. 73.						
	268	Refer to Pr. 52.						
	269	Parameter for manufacturer	setting.	Do not				
	270	Stop-on contact/load torque high-speed frequency control selection	1	0	0	Without stop-on contact control and load torque highspeed frequency control		
					1	Stop-on contact control		
					2	Load torque high speed frequency control		
					3	Stop-on contact + load torque high speed frequency control		
	271	High-speed setting maximum current	0.1\%	50\%	0 to 220\%	Set the upper and lower limits of the current at high and middle speeds.		
	272	Middle-speed setting minimum current	0.1\%	100\%	0 to 220\%			
	273	Current averaging range	0.01 Hz	9999	0 to 400 Hz	Average current during acceleration from (Pr. 273×1 / 2) Hz to (Pr. 273) Hz can be achieved.		
					9999	Average current during acceleration from (Pr. 5×1 / 2) Hz to (Pr. 5) Hz is achieved.		
	274	Current averaging filter time constant	1	16	1 to 4000	Set the time constant of the primary delay filter relative to the output current. (The time constant [ms] is $0.75 \times$ Pr. 274 and the initial value is 12 ms .) A larger setting provides higher stability but poorer response.		

$\begin{aligned} & \text { 들 } \\ & \text { 흘 } \\ & \text { 든 } \end{aligned}$	Para		Name	Incre ments	Initial Value	Range	Description	
	270		Stop-on contact/load torque high-speed frequency control selection	1	0	0	Without stop-on contact control and load torque highspeed frequency control	
						1	Stop-on contact control	
						2	Load torque high speed frequency control	
						3	Stop-on contact + load torque high speed frequency control	
	275		Stop-on contact excitation current low-speed multiplying factor	0.1\%	9999	0 to 1000\%	Usually set a value between 130% and 180%. Set the force (holding torque) for stop-on-contact control.	
						9999	No compensation.	
	276		PWM carrier frequency at stop-on contact	1	9999	0 to 9	Set a PWM carrier frequency for stop-on-contact control. (Valid at the output frequency of 3 Hz or less.)	
						9999	As set in Pr. 72 PWM frequency selection.	
	278		Brake opening frequency	0.01 Hz	3 Hz	0 to 30 Hz	Set to the rated slip frequency of the motor + about 1.0 Hz . This parameter may be only set if Pr. $278 \leq \operatorname{Pr} 282$.	
	279		Brake opening current	0.1\%	130\%	0 to 220\%	Generally, set this parameter to about 50 to 90%. If the setting is too low, the load is liable to drop due to gravity at start. Suppose that the rated inverter current is 100%.	
	280		Brake opening current detection time	0.1 s	0.3s	0 to 2s	Generally, set this parameter to about 0.1 to 0.3 s .	
	281		Brake operation time at start	0.1s	0.3s	0 to 5s	Pr. 292 = 7: Set the mechanical delay time until the brake is loosened. Pr. 292 = 8: Set the mechanical delay time until the brake is loosened + about 0.1 to 0.2 s .	
	282		Brake operation frequency	0.01 Hz	6 Hz	0 to 30 Hz	At this frequency, the brake opening request signal (BOF) is switched off. Generally, set this parameter to the Pr. 278 setting +3 to 4 Hz . Setting is enabled only when Pr. $282 \geq \operatorname{Pr} .278$.	
	283		Brake operation time at stop	0.1 s	0.3s	0 to 5s	Pr. 292 = 7: Set the mechanical delay time until the brake is closed +0.1 s . Pr. 292 = 8: Set the mechanical delay time until the brake is closed + about 0.2 to 0.3 s .	
	284		Deceleration detection function selection	1	0	0	Deceleration is not detected.	
			1			If deceleration is not normal during deceleration operation, the inverter fault (E.MB2) is provided to trip the inverter and turn OFF the brake opening request signal (BOF).		
	285			Overspeed detection frequency	0.01 Hz	9999	0 to 30 Hz	When brake sequence function is valid under encoder feedback control If (detected frequency) - (output frequency) > Pr. 285 under encoder feedback control, the inverter fault (E.MB1) is provided to trip the inverter and turn OFF the brake opening request signal (BOF).
			9999				Overspeed is not detected.	
		292	Automatic acceleration/ deceleration	1	0	$\begin{aligned} & 0,3,5 \text { to } 8, \\ & 11 \end{aligned}$	Brake sequence function is valid when a setting is "7 or 8 ".	
	285		Excessive speed deviation			9999	Without speed deviation excessive	
			detection frequency	0.01 Hz	9999	0 to 30 Hz		
		853	Speed deviation time	0.1 s	1s	0 to 100s	If the difference (absolute value) between the speed command value and actual speed exceeds the Pr. 285 Speed deviation excess detection frequency setting for longer than the time set in Pr. 853 Speed deviation time during speed control under vector control, speed deviation excessive occurs and error "E. OSD" appears, resulting in a stop.	

$\begin{aligned} & \text { 들 } \\ & \text { 흘 } \\ & \text { 들 } \end{aligned}$	Parameter	Name	Incre ments	Initial Value	Range	Description	
	286	Droop gain	0.1\%	0\%	0	Droop control is invalid	
					$\begin{aligned} & \hline 0.1 \text { to } \\ & 100 \% \end{aligned}$	Set the drooping amount at the rated torque as a percentage with respect to the rated frequency.	
	287	Droop filter time constant	0.01s	0.3s	0 to 1s	Set the time constant of the applied to the torque current	e primary delay filter nt.
	288	Droop function activation selection	1	0		Real sensor less vector I vector control	Advanced magnetic flux vector control
					0, 10	Droop control is not exercised during acceleration/deceleration. (When Pr. 288 = 10, droop compensation amount is determined using the motor speed as reference.)	Droop control is not exercised during acceleration/ deceleration. Droop compensation amount is determined using the rated motor frequency as reference.
					1, 11	Droop control is always exercised during operation. (with 0 limit) (When Pr. 288 = 11, droop compensation amount is determined using the motor speed as reference.)	
					2	Droop control is always exercised during operation. (without 0 limit)	
	291	Pulse train I/O selection	1	0		Input	Output
					0	JOG terminal	FM output
					1	Pulse train input	FM output
					10	JOG terminal	Pulse train open collector output (50% duty) Put
					11	Pulse train input	
					20	JOG terminal	Pulse train open collector output (ON width is always same)
					21		
					100	Pulse train input	Pulse train open collector output (ON width is always same (independently of Pr. 54))
	384	Input pulse division scaling factor	1	0	0 to 250	Indicates division scaling factor to the input pulse and the frequency resolution to the input pulse changes according to the value.	
	385	Frequency for zero input pulse	0.01 Hz	0	0 to 400 Hz	Set the frequency when the input pulse is 0 (bias).	
	386	Frequency for maximum input pulse	0.01 Hz	60 Hz	0 to 400 Hz	Set the frequency when the input pulse is maximum (gain).	
-	292, 293	Refer to Pr. 61.					
-	294	Refer to Pr. 261.					
	296	Password lock level	1	9999	$\begin{gathered} 0 \text { to } 6,99, \\ 100 \text { to } 106, \\ 199 \end{gathered}$	Select restriction level of parameter reading/ writing when a password is registered.	
					9999	No password lock	
	297	Password lock/unlock	1	9999	$\begin{gathered} 1000 \text { to } \\ 9998 \end{gathered}$	Register a 4-digit password	
					(0 to 5)*	```Displays password unlock error count. (Reading only) (Valid when Pr. 296 = "100" to "106, 199")```	* "0 or 9999" can be set in Pr. 297 at any time although the setting is invalid (the displayed value does not
					9999*	No password lock	
-	299	Refer to Pr. 57.					

$\begin{aligned} & \text { 들 } \\ & \text { 을 } \\ & \frac{1}{3} \\ & \hline 1 \end{aligned}$	Para		Name	Incre ments	Initial Value	Range	Description
	363		Completion signal output delay time	0.1s	0.5s	0 to 5s	The orientation complete signal (ORA) is output delaying the set time after in-position zone is entered. Also, the signal turns off delaying the set time after in-position zone is out.
	364		Encoder stop check time	0.1s	0.5s	0 to 5s	Orientation fault signal (ORM) is output when the encoder remains stopped for the set time without orientation completion in the state where no orientation complete signal (ORA) is output. ORM signal is output when orientation is not completed again in the set time in the state where ORA signal is output.
	365		Orientation limit	1s	9999	0 to 60s	Measure the time taken after passing the creep switchover position and output the orientation fault signal (ORM) if orientation is not completed within the set time.
						9999	Set to 120s.
	366		Recheck time	0.1s	9999	0 to 5 s	Turning off the start signal with orientation command (X22) on after stopping the motor by orientation control, the present position is checked again after the set time elapses and the orientation complete signal (ORA) or orientation fault signal (ORM) is output.
						9999	Not checked.
		369	Number of encoder pulses	1	1024	0 to 4096	Set the number of pulses of the encoder. Set the number of pulses before multiplied by four.
						0	Orientation is executed from the current rotation direction.
		393	Orientation selection	1	0	1	Orientation is executed from the forward rotation direction.
						2	Orientation is executed from the reverse rotation direction.
		396	Orientation speed gain (P term)	1	60	0 to 1000	Servo rigidity is (response level during position
		397	Orientation speed integral time	0.001s	0.333 s	0 to 20.0s	control loop) at orientation stop can be adjusted.
		398	Orientation speed gain (D term)	0.1\%	1\%	0 to 100.0\%	Lag/advance compensation gain can be adjusted.
		399	Orientation deceleration ratio	1	20	0 to 1000	Make adjustment when the motor runs back at orientation stop or the orientation time is long.
	359		En	1	1	0	Clockwise direction as viewed from A is forward rotation
						1	Encoder Counter clockwise direction as viewed from A is forward rotation
	367					0 to 400 Hz	Set the range of speed feedback control.
	367		Speed feedback range	0.01 Hz	9999	9999	Encoder feedback control is invalid
	368		Feedback gain	0.1	1	0 to 100	Set when the rotation is unstable or response is slow.
	369		Number of encoder pulses	1	1024	0 to 4096	Set the number of pulses of the encoder. Set the number of pulses before multiplied by four.
	374		Overspeed detection level	0.01 Hz	140 Hz	0 to 400 Hz	When the motor speed reaches or exceeds the speed set in Pr. 374 during encoder feedback control, Real sensorless vector control, or vector control, over speed (E.OS) occurs and stops the inverter output.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \& Parameter \& Name \& Incre ments \& Initial Value \& Range \& \multicolumn{2}{|c|}{Description} \\
\hline \& 376 \& Encoder signal loss detection enable/disable selection \& 1 \& 0 \& 1 \& \multicolumn{2}{|l|}{Signal loss detection is valid When the cable of the encoder signal is broken during encoder feedback control, orientation control, or vector control, signal loss detection (E.ECT) is activated to stop the inverter output.} \\
\hline \multirow[b]{2}{*}{-} \& 380 to 383 \& \multicolumn{6}{|l|}{Refer to Pr. 29.} \\
\hline \& 384 to 386 \& \multicolumn{6}{|l|}{Refer to Pr. 291.} \\
\hline \multirow{23}{*}{} \& 419 \& Position command source selection \& 1 \& 0 \& \begin{tabular}{|l|}
\hline 0 \\
\hline 1 \\
\hline 2 \\
\hline
\end{tabular} \& 年imple position control functio \& se train input (FR-A7AL) \\
\hline \& 420 \& Command pulse scaling factor numerator \& 1 \& 1 \& 0 to 32767 \& \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Set the electronic gear. \(\operatorname{Pr} .420\) is a numerator and \(\operatorname{Pr} .421\) is a denominator.}} \\
\hline \& 421 \& Command pulse scaling factor denominator \& 1 \& 1 \& 0 to 32767 \& \& \\
\hline \& 422 \& Position loop gain \& \(1 \mathrm{~s}^{-1}\) \& \(25 \mathrm{~s}^{-1}\) \& 0 to \(150 \mathrm{~s}^{-1}\) \& \multicolumn{2}{|l|}{Set the gain of the position loop.} \\
\hline \& 423 \& Position feed forward gain \& 1\% \& 0\% \& 0 to 100\% \& \multicolumn{2}{|l|}{Function to cancel a delay caused by the droop pulses of the deviation counter.} \\
\hline \& 424 \& Position command acceleration/ deceleration time constant \& 0.001s \& Os \& 0 to 50s \& \multicolumn{2}{|l|}{Used when rotation has become unsmooth at a large electronic gear ratio (about 10 times or more) and low speed.} \\
\hline \& 425 \& Position feed forward command filter \& 0.001s \& Os \& 0 to 5s \& \multicolumn{2}{|l|}{Enters the primary delay filter in response to the feed forward command.} \\
\hline \& 426 \& In-position width \& 1 pulse \& \[
\begin{gathered}
100 \\
\text { pulse }
\end{gathered}
\] \& 0 to 32767 pulse \& \multicolumn{2}{|l|}{The in-position signal (Y36) turns on when the droop pulses become less than the setting.} \\
\hline \& \multirow[t]{2}{*}{427} \& \multirow[t]{2}{*}{Excessive level error} \& \multirow[t]{2}{*}{1} \& \multirow[t]{2}{*}{40K} \& 0 to 400K \& \multicolumn{2}{|l|}{A position error excessive (E.OD) occurs when the droop pulses exceed the setting.} \\
\hline \& \& \& \& \& 9999 \& \multicolumn{2}{|l|}{Function invalid} \\
\hline \& \multirow[t]{2}{*}{428} \& \multirow[t]{2}{*}{Command pulse selection} \& \multirow[t]{2}{*}{1} \& \multirow[t]{2}{*}{0} \& 0 to 2 \& Pulse train + rotation signal sign \& Negative logic \\
\hline \& \& \& \& \& 3 to 5 \& Pulse train + rotation signal sign \& Positive logic \\
\hline \& \multirow[t]{2}{*}{429} \& \multirow[t]{2}{*}{Clear signal selection} \& \multirow[t]{2}{*}{1} \& \multirow[t]{2}{*}{1} \& 0 \& \multicolumn{2}{|l|}{Deviation counter is cleared at trailing edge (at the moment when H level is changed to L level)} \\
\hline \& \& \& \& \& 1 \& \multicolumn{2}{|l|}{eviation counter is cleared at L level} \\
\hline \& \multirow[b]{9}{*}{430

464} \& \multirow{8}{*}{Pulse monitor selection} \& \multirow{8}{*}{1} \& \multirow{8}{*}{9999} \& \& Description \& FR-DU07(FR-PU04/FR-
PU07)
display

\hline \& \& \& \& \& 0 \& \multirow[t]{2}{*}{The cumulative command pulse value is displayed.} \& Lower 4(5) digits

\hline \& \& \& \& \& 1 \& \& Upper 4(5) digits

\hline \& \& \& \& \& 2 \& The cumulative feedback \& Lower 4(5) digits

\hline \& \& \& \& \& 3 \& pulse value is displayed. \& Upper 4(5) digits

\hline \& \& \& \& \& 4 \& The droop pulses are \& Lower 4(5) digits

\hline \& \& \& \& \& 5 \& monitored. \& Upper 4(5) digits

\hline \& \& \& \& \& 9999 \& Frequency monitor is display \&

\hline \& \& Digital position control sudden stop deceleration time \& 0.1 s \& 0 \& 0 to 360.0s \& Set the time until the inverter rotation (reverse rotation) co the position feed forward fun \& stops when the forward mmand is turned OFF with ction.

\hline \multirow{4}{*}{-} \& 450 \& \multicolumn{6}{|l|}{Refer to Pr. 71.}

\hline \& 451 \& \multicolumn{6}{|l|}{Refer to Pr. 80.}

\hline \& 453, 454 \& \multicolumn{6}{|l|}{Refer to Pr. 80.}

\hline \& 455 to 463 \& \multicolumn{6}{|l|}{Refer to Pr. 82.}

\hline
\end{tabular}

Parameter List

$\begin{aligned} & \text { 들 } \\ & \text { 을 } \\ & \text { 프 } \end{aligned}$		Name	Incre ments	Initial Value	Range	Descr	iption	
	495	Remote output selection	1	0	0	Remote output data clear at power OFF	Remote output data is cleared during an inverter reset	
					1	Remote output data retention at power OFF		
					10	Remote output data clear at power OFF	Remote output data is retained during an inverter reset	
					11	Remote output data retention at power OFF		
	496	Remote output data 1	1	0	0 to 4095	Output terminal can be switched on and off.		
	497	Remote output data 2	1	0	0 to 4095			
	503	Maintenance timer	1	0	0 (1 to 9998)	Displays the cumulative energization time of the inverter in 100h increments. Reading only Writing the setting of " 0 " clears the cumulative energization time.		
	504	Maintenance timer alarm output set time	1	9999	0 to 9998	Set the time taken until when the maintenance timer alarm output signal (Y95) is output.		
					9999	No function		
-	505	Refer to Pr. 37.						
-	516 to 519	Refer to Pr. 29.						
	539	Refer to Pr. 343.						
	547	USB communication station number	1	0	0 to 31	Specify the inverter station number.		
	548	USB communication check time interval	0.1s	9999	0	USB communication is enabled. However, the inverter will come to an alarm stop (E. USB) if operation is changed to PU operation mode.		
					0.1 to 999.8s	Set the interval of communication check time.		
					9999	No communication check		
	551	Refer to Pr. 338 and Pr. 339.						
	549 to 551	Refer to Pr. 343.						
	555	Current average time	0.1 s	1s	0.1 to 1.0s	Set the time taken to average the current during start bit output (1s).		
	556	Data output mask time	0.1s	Os	0.0 to 20.0s	Set the time for not obtaining (mask) transient state data.		
	557	Current average value monitor signal output reference current	0.01A	Rated inverter current	0 to 500A	Set the reference (100\%) the current average value	for outputting the signal of	
	563, 564	Refer to Pr. 52.						
	569	Refer to Pr. 80.						
	571	Refer to Pr. 13.						
	574	Refer to Pr. 95.						
	575 to 577	Refer to Pr. 127.						
-	611	Refer to Pr. 57.						
	665	Refer to Pr. 882.						
	684	Refer to Pr. 82.						
	800	Refer to Pr. 81.						
	802	Refer to Pr. 10.						
	803	Refer to Pr. 22.						

$\begin{aligned} & \text { 들 } \\ & \text { 를 } \\ & \text { 든 } \end{aligned}$	Parameter	Name	Incre ments	Initial Value	Range	Description
	804	Torque command source selection	1	0	0	Torque command by terminal 1 analog input
					1	Torque command by parameter Pr. 805 or Pr. 806 setting (-400% to 400%)
					2	Torque command using pulse train input (FR-A7AL)
					3	Torque command by using CC-Link (FR-A7NC)
					4	Digital input from the option (FR-A7AX)
					5	Torque command by using CC-Link (FR-A7NC)
					6	
	805	Torque command value (RAM)	1\%	1000\%	$\begin{aligned} & 600 \text { to } \\ & 1400 \% \end{aligned}$	Digital setting of the torque command can be made by setting Pr. 805 or Pr. 806 . (Setting from communication option, etc. can be made.) In this case, set the speed limit value to an appropriate value to prevent overspeed.
	806	Torque command value (RAM,EEPROM)	1\%	1000\%	$\begin{aligned} & 600 \text { to } \\ & 1400 \% \end{aligned}$	
	807	Speed limit selection	1	0	0	Use the speed command value during speed control as speed limit.
					1	According to Pr. 808 and Pr. 809, set the speed limit in forward and reverse rotation directions individually.
					2	The analog voltage of the terminal 1 input is used to make speed limit. For 0 to 10 V input, set the forward rotation speed limit. (The reverse rotation speed limit is Pr. 1 Maximum frequency) For -10 to 0 V input, set the reverse rotation speed limit. (The forward rotation speed limit is Pr. 1 Maximum frequency.) The maximum frequency of both the forward and reverse rotations is Pr. 1 Maximum frequency.
	808	Forward rotation speed limit	0.01 Hz	60 Hz	0 to 120 Hz	Set the speed limit level during forward rotation. (valid when Pr. 807 = 1)
	809	Reverse rotation speed limit	0.01 Hz	9999	0 to 120 Hz	Set the speed limit level during reverse rotation. (valid when Pr. $807=1$)
					9999	The setting is the same as that of the torque limit in the forward rotation direction.
-	810	Refer to Pr. 22.				
-	811	Refer to Pr. 22 and Pr. 37.				
-	812 to 817	Refer to Pr. 22.				
	818	Easy gain tuning respo level setting	1	2	1 to 15	1 : Slow response 15 : Fast response
	819		1	0	0	No tuning
		Easy gain tuning selection			1	The optimum gain is automatically set from the torque command and speed during motor operation.
					2	Manual input of load (Pr. $880)$ speed during motor operation.
	8208830	Speed control P gain 1	1\%	60\%	0 to 1000\%	Set the proportional gain for speed control. (Increasing the value improves trackability in response to a speed command change and reduces speed variation with disturbance.)
		Speed control P gain 2	1\%	9999	0 to 1000\%	Second function of Pr. 820 (valid when RT signal is on)
					9999	No function
	8218831	Speed control integral time 1	0.001s	0.333s	0 to 20s	Set the integral time during speed control. (Decrease the value to shorten the time taken for returning to the original speed if speed variation with disturbance occurs.)
		Speed control integral time 2	0.001s	9999	0 to 20s	Second function of Pr. 821 (valid when the RT terminal is on)
					9999	No function
-	822	Refer to Pr. 74.				

$\begin{aligned} & \text { 들 } \\ & \text { OU } \\ & \text { 들 } \end{aligned}$	Parameter 	Name	Incre ments	Initial Value	Range	Description
	840	Torque bias selection	1	9999	0	Set the contact signal (X42, X43) based-torque bias amount using Pr. 841 to Pr. 843.
					1	Set the terminal 1-based torque bias amount as desired in C16 to C19. (forward rotation)
					2	Set the terminal 1-based torque bias amount as desired in C16 to C19. (reverse rotation)
					3	The terminal 1-based torque bias amount can be set automatically in C16 to C19, Pr. 846 according to the load.
					9999	Without torque bias, rated torque 100\%
	841	Torque bias 1	1\%	9999	$\begin{aligned} & 600 \text { to } \\ & 999 \% \end{aligned}$	Negative torque bias amount (-400\% to -1\%)
	842	Torque bias 2			$\begin{aligned} & \hline 1000 \text { to } \\ & 1400 \% \end{aligned}$	Positive torque bias amount (0\% to 400\%)
	843	Torque bias 3			9999	Without torque bias setting
	844	Torque bias filter	0.001s	9999	0 to 5s	Time until torque rises.
					9999	Same operation as when 0s is set.
	845	Torque bias operation time	0.01s	9999	0 to 5s	Time for maintaining torque equivalent to the torque bias amount.
					9999	Same operation as when 0s is set.
	846	Torque bias balance compensation	0.1V	9999	0 to 10V	Set the voltage under balanced load.
					9999	Same operation as when 0V is set.
	847	Fall-time torque bias terminal 1 bias	1\%	9999	0 to 400\%	Set the bias value of the torque command.
					9999	Same as at a rise time (C16, C17).
	848	Fall-time torque bias terminal 1 gain	1\%	9999	0 to 400\%	Set the gain value of the torque command.
					9999	Same as at a rise time (C18, C19).
-	849	Refer to Pr. 74.				
	850	Refer to Pr. 10.				
	853	Refer to Pr. 285.				
	854	Excitation ratio	1\%	100\%	0 to 100\%	Set the excitation ratio under no load.
	858	Terminal 4 function assignment	1	0	0	Frequency/speed command
					1	Magnetic flux command
					4	Stall prevention/torque limit
					9999	No function
	868	Terminal 1 function assignment	1	0	0	Frequency setting auxiliary
					1	Magnetic flux command
					2	Regenerative torque limit
					3	Torque command
					4	Stall prevention/torque limit/torque command
					5	Forward/reverse rotation speed limit
					6	Torque bias
					9999	No function
-	859, 860	Refer to Pr. 82.				
	862	Notch filter time constant	1	0	0 to 60	You can use the mechanical resonance speed to make this setting to reduce the response level of the mechanical resonance frequency band, avoiding mechanical resonance.
	863	Notch filter depth	1	0	0	Deep (-40dB)
					1	$\uparrow(-14 \mathrm{~dB})$
					2	\downarrow (-8dB)
					3	Sharrow (-4dB)

$\begin{aligned} & \text { 들 } \\ & \text { 흘 } \\ & \text { 들 } \end{aligned}$	Parameter	Name	Incre ments	Initial Value	Range	Description
	864	Torque detection	0.1\%	150\%	0 to 400\%	You can make setting to output a signal if the motor torque exceeds the predetermined value.
-	865	Refer to Pr. 41.				
	866	Refer to Pr. 55.				
	867	Refer to Pr. 52.				
	868	Refer to Pr. 858.				
-	872	Refer to Pr. 251.				
	873	Speed limit	0.01 Hz	20 Hz	0 to 120 Hz	Frequency is limited at the set frequency $+\operatorname{Pr.} 873$ during vector control.
-	874	Refer to Pr. 22.				
	875				0	At occurrence of any fault, output is shut off immediately. At this time, the fault output also turns on.
		Fault definition	1	0	1	At occurrence of external thermal operation (OHT), electronic thermal relay function (THM) or PTC thermistor function (PTC) fault, the motor is decelerated to a stop. At occurrence of fault other than OHT, THM and PTC, trips immediately. Same operation as when "0" is set is performed under position control.
-	877 to 881	Refer to Pr. 828.				
	882	Regeneration avoidance operation selection	1	0	0	Regeneration avoidance function invalid
					1	Regeneration avoidance function is always valid
					2	Regeneration avoidance function is valid only at constant speed
	883	Regeneration avoidance operation level	0.1V	$\underset{*}{380 /}$	300 to 800 V	Set the bus voltage level at which regeneration avoidance operates. When the bus voltage level is set to low, overvoltage error will be less apt to occur. However, the actual deceleration time increases. The set value must be higher than the power supply voltage $\times \sqrt{2}$ * The initial value differs according to the voltage level. (200V class / 400V class)
	884	Regeneration avoidance at deceleration detection sensitivity	1	0	0	Regeneration avoidance by bus voltage change ratio is invalid
					1 to 5	Set sensitivity to detect the bus voltage change. Setting: $1 \rightarrow 5$ $\text { Detection sensitivity:Low } \rightarrow \text { High }$
	885	Regeneration avoidance compensation frequency limit	0.01 Hz	6 Hz	0 to 10Hz	Set the limit value of frequency which rises at activation of regeneration avoidance function.
					9999	Frequency limit invalid
	886	Regeneration avoidance voltage gain	0.1\%	100\%	0 to 200\%	Adjust responsiveness at activation of regeneration avoidance. Setting a larger value in Pr. 886 will improve responsiveness to the bus voltage change. However, the output frequency could become unstable. When vibration is not suppressed by decreasing the Pr. 886 setting, set a smaller value in Pr. 665.
	665	Regeneration avoidance frequency gain	0.1\%	100\%	0 to 200\%	
	888	Free parameter 1	1	9999	0 to 9999	Parameters you can use for your own purposes. Used for maintenance, management, etc. by setting a unique number to each inverter when multiple inverters are used.
	889	Free parameter 2	1	9999	0 to 9999	
-	891	Refer to Pr. 52.				

$\begin{aligned} & \text { 들 } \\ & \text { 을 } \\ & \text { 들 } \end{aligned}$	Parameter	Name	Incre ments	Initial Value	Range	Description
	892	Load factor	0.1\%	100\%	30 to 150\%	Set the load factor for commercial power supply operation. This value is used to calculate the power consumption estimated value during commercial power supply operation.
	893	Energy saving monitor reference (motor capacity)	0.01 kW	Rated inverter capacity	0.1 to 55kW	Set the motor capacity (pump capacity). Set when calculating power saving rate and average power saving rate value.
	894	Control selection during commercial power supply operation	1	0	0	Discharge damper control (fan)
					1	Inlet damper control (fan)
					2	Valve control (pump)
					3	Commercial power-supply drive (fixed value)
	895	Power saving rate reference value	1	9999	0	Consider the value during commercial power-supply operation as 100\%
					1	Consider the Pr. 893 setting as 100\%.
					9999	No function
	896	Power unit cost	0.01	9999	0 to 500	Set the power unit cost. Displays the power saving rate on the energy saving monitor
					9999	No function
	897	Power saving monitor average time	1h	9999	0	Average for 30 minutes
					1 to 1000h	Average for the set time
					9999	No function
	898	Power saving cumulative monitor clear	1	9999	0	Cumulative monitor value clear
					1	Cumulative monitor value hold
					10	Cumulative monitor continue (communication data upper limit 9999)
					9999	Cumulative monitor continue (communication data upper limit 65535)
	899	Operation time rate (estimated value)	0.1\%	9999	0 to 100\%	Use for calculation of annual power saving amount. Set the annual operation ratio (consider 365 days \times 24hr as 100\%).
					9999	No function
	$\begin{aligned} & \mathrm{CO} \\ & (900) \end{aligned}$	FM terminal calibration	-	-	-	Calibrate the scale of the meter connected to terminal FM. (Only when Pr. $291=0,1$)
	$\begin{aligned} & \text { C1 } \\ & (901) \end{aligned}$	AM terminal calibration	-	-	-	Calibrate the scale of the analog meter connected to terminal AM.
-	$\begin{aligned} & \text { C2(902) } \\ & \text { to } \\ & \text { C7(905) } \end{aligned}$	Refer to Pr. 125 and Pr. 126.				
	$\begin{aligned} & \mathrm{C} 12 \\ & (917) \end{aligned}$	Terminal 1 bias frequency (speed)	0.01 Hz	0 Hz	0 to 400 Hz	Set the frequency on the bias side of terminal 1 input. (valid when Pr. $868=5$)
	$\begin{aligned} & \hline \text { C13 } \\ & (917) \end{aligned}$	Terminal 1 bias (speed)	0.1\%	0\%	0 to 300\%	Set the converted \% of the bias side voltage (current) of terminal 1 input. (valid when Pr. $868=5$)
	$\begin{aligned} & \hline \text { C14 } \\ & (918) \end{aligned}$	Terminal 1 gain frequency (speed)	0.01 Hz	60 Hz	0 to 400 Hz	Set the frequency of terminal 1 input gain (maximum). (valid when Pr. $868=5$)
	$\begin{aligned} & \hline \text { C15 } \\ & (918) \end{aligned}$	Terminal 1 gain (speed)	0.1\%	100\%	0 to 300\%	Set the converted \% of the gain side voltage (current) of terminal 1 input. (valid when Pr. $868=5$)

$\begin{aligned} & \text { 들 } \\ & \text { 흘 } \\ & \frac{1}{3} \end{aligned}$		Name	Incre ments	Initial Value	Range	Description
Adjustment of analog input torque magnetic flux command(calibration)	$\begin{aligned} & \text { C16 } \\ & (919) \end{aligned}$	Terminal 1 bias command (torque/magnetic flux)	0.1\%	0\%	0 to 400\%	Set the torque/magnetic flux command value on the bias side of terminal 1 input. (valid when Pr. $868 \neq 0$, 5)
	$\begin{aligned} & \mathrm{C} 17 \\ & (919) \end{aligned}$	Terminal 1 bias (torque/ magnetic flux)	0.1\%	0\%	0 to 300\%	Set the converted \% of the bias side voltage (current) of terminal 1 input. (valid when Pr. $868 \neq 0$, 5)
	$\begin{aligned} & \text { C18 } \\ & (920) \end{aligned}$	Terminal 1 gain command (torque/magnetic flux)	0.1\%	150\%	0 to 400\%	Set the torque/magnetic flux command value on the gain side of terminal 1 input. (valid when Pr. $868 \neq 0$, 5)
	C19 (920)	Terminal 1 gain (torque/ magnetic flux)	0.1\%	100\%	0 to 300\%	Set the converted \% of the gain side voltage (current) of terminal 1 input. (valid when $\operatorname{Pr} .868 \neq 0$, 5)
	C38 (932)	Terminal 4 bias command (torque/magnetic flux)	0.1\%	0\%	0 to 400\%	Set the torque/magnetic flux command value on the bias side of terminal 4 input. (valid when $\operatorname{Pr} .858=1$, 4)
	$\begin{array}{\|l\|} \hline \text { C39 } \\ (932) \end{array}$	Terminal 4 bias (torque/ magnetic flux)	0.1\%	20\%	0 to 300\%	Set the converted \% of the bias side current (voltage) of terminal 4 input. (valid when Pr. $858=1,4$)
	C40 (933)	Terminal 4 gain command (torque/magnetic flux)	0.1\%	150\%	0 to 400\%	Set the torque/magnetic flux command value on the bias side of terminal 4 input. (valid when $\operatorname{Pr} .858=1$, 4)
	C41 (933)	Terminal 4 gain (torque/ magnetic flux)	0.1\%	100\%	0 to 300\%	Set the converted \% of the gain side current (voltage) of terminal 4 input. (valid when Pr. $858=1,4$)
-	989	Parameter for manufacturer setting. Do not set.				
	990	PU buzzer control			0	Without buzzer
					1	With buzzer
	991	PU contrast adjustment	1	58	0 to 63	Contrast adjustment of the LCD of the parameter unit (FR-PU04/FR-PU07) can be performed. 0 (Light) $\rightarrow 63$ (Dark)
	Pr.CL	Parameter clear	1	0	0, 1	Setting "1" returns all parameters except calibration parameters to the initial values.
	ALLC	All parameter clear	1	0	0, 1	Setting "1" returns all parameters to the initial values.
	Er.CL	Faults history clear	1	0	0, 1	Setting "1" will clear eight past faults.
	PCPY	Parameter copy	1	0	0	Cancel
					1	Read the source parameters to the operation panel.
					2	Write the parameters copied to the operation panel to the destination inverter.
					3	Verify parameters in the inverter and operation panel.

The parameter number in parentheses is the one for use with the parameter unit (FR-PU04/FR-PU07).

5 TROUBLESHOOTING

When a fault occurs in the inverter, the inverter trips and the PU display automatically changes to one of the following fault or alarm indications.
If the fault does not correspond to any of the following faults or if you have any other problem, please contact your sales representative.

- Retention of fault output signal .. When the magnetic contactor (MC) provided on the input side of the inverter is opened when a fault occurs, the inverter's control power will be lost and the fault output will not be held.
- Fault or alarm indication When a fault or alarm occurs, the operation panel display automatically switches to the fault or alarm indication.
- Resetting method \qquad When a fault occurs, the inverter output is kept stopped. Unless reset, therefore, the inverter cannot restart. (Refer to page 141)
- When any fault occurs, take the appropriate corrective action, then reset the inverter, and resume operation. Not doing so may lead to the inverter fault and damage.

Inverter fault or alarm indications are roughly categorized as below.
(1) Error message

A message regarding operational fault and setting fault by the operation panel (FR-DU07) and parameter unit (FR-PU04 /FR-PU07) is displayed. The inverter does not trip.
(2) Warning

The inverter does not trip even when a warning is displayed. However, failure to take appropriate measures will lead to a fault.
(3) Alarm

The inverter does not trip. You can also output an alarm signal by making parameter setting.
(4) Fault

When a fault occurs, the inverter trips and a fault signal is output.

REMARKS

- Past eight faults can be displayed using the setting dial. (Refer to page 160 for the operation.)

5.1 Reset method of protective function

(1) Resetting the inverter

The inverter can be reset by performing any of the following operations. Note that the internal thermal integrated value of the electronic thermal relay function and the number of retries are cleared (erased) by resetting the inverter. Inverter recovers about 1s after the reset is released.

Operation 1: Using the operation panel, press $\left.\frac{\text { STOP }}{\text { RISEI }}\right)$ to reset the inverter.
(This may only be performed when a fault occurs (Refer to page 147 for fault.))

Operation 2: Switch power OFF once. After the indicator of the operation panel turns OFF, switch it ON again.

Operation 3: Turn ON the reset signal (RES) for more than 0.1 s . (If the RES signal is kept ON, "Err." appears (flickers) to indicate that the inverter is in a reset status.)

CAUTION

OFF status of the start signal must be confirmed before resetting the inverter fault. Resetting inverter fault with the start signal ON restarts the motor suddenly.

5．2 List of fault or alarm display

Operation Panel Indication			Name Faults history	Refer to 160	Operation Panel Indication			Name	Refer to				
	$E-$	E－－				EFİ	E．PTC＊	PTC thermistor operation	152				
	－1101208	HOLD	Operation panel lock	143		E．EIV）	E．OPT	Option fault	153				
	¢198	LOCd	Password locked	143		E．ロO	E．OP3	Communication option fault	153				
	$\begin{array}{cc:c} E r \\ E r \end{array}$	Er1 to 4	Parameter write error	143			E． 1 to E． 3	Option fault	153				
	Kit to	rE1 to 4	Copy operation error	144		$E F$	E．PE	Parameter storage device fault	153				
						E．F！に	E．PUE	PU disconnection	154				
	Err．	Err．	Error	145		E．Ei	E．RET	Retry count excess	154				
	ClO_{10}	OL	Stall prevention （overcurrent）	145		に，にた	E．PE2＊	Parameter storage device fault	154				
	Qí	oL	Stall prevention （overvoltage）	145		$\begin{array}{ll} E & G \\ E & G \\ E & 7 \\ E & 7 \\ E & \end{array}$	E． 5 E． 6 E． 7 E．CPU	CPU fault	154				
	18	TH	Electronic thermal relay function prealarm	146									
	F！	PS	PU stop	146									
	171	MT	Maintenance signal output	146			E．CTE	Operation panel power supply short circuit，RS－485 terminal power supply short circuit	154				
	8	CP	Parameter copy	146									
	51	SL	Speed limit indication （Output during speed limit）	146									
E	5	SL	（Output during speed limit）	146			E．P24	24VDC power output short circuit	156				
$\frac{\overline{0}}{\frac{0}{4}}$	Fr	FN	Fan alarm	147		E．icioic	E．CDO＊	Output current detection value exceeded	156				
$\begin{aligned} & \stackrel{\rightharpoonup}{\vec{~}} \\ & \stackrel{\rightharpoonup}{\sim} \end{aligned}$	E．in i	E．OC1	Overcurrent trip during acceleration	147	$\begin{aligned} & \stackrel{\rightharpoonup}{5} \\ & \stackrel{\pi}{4} \\ & \hline \end{aligned}$	E． B_{1}	E．IOH＊	Inrush current limit circuit fault	156				
	E．EIE	E．OC2	Overcurrent trip during constant speed	148		E．E下	E．SER＊	Communication fault （inverter）	157				
	E．Oİ	E．OC3	Overcurrent trip during deceleration or stop	148		E，Fi！	E．AIE＊	Analog input fault	157				
	E．ini	E．OV1	Regenerative overvoltage trip during acceleration	149		E．	E．OS	Overspeed occurrence	155				
	ERールース	E．OV2	Regenerative overvoltage trip during constant speed	149			E．OSD	Speed deviation excess detection	155				
	ERİご	E．OV3	Regenerative overvoltage trip during deceleration or stop	149		EEG	E．ECT	Signal loss detection	155				
						E．Fin	E．OD	Excessive position fault	156				
	$E 0^{-10}$	E．THT	Inverter overload trip （electronic thermal relay function）	150			E．MB1 to E．MB7	Brake sequence fault	155				
						E．E	E．EP	Encoder phase fault	156				
	E．E－H17	E．THM	Motor overload trip （electronic thermal relay function）	150		E．ロ゙心	E．USB＊	USB communication fault	157				
						E．-1	E． 4	Converter overcurrent	157				
	E゙，	E．FIN	Heatsink overheat	150		E．E	E． 8	Power supply fault	157				
	$E .1$ Fir	E．IPF	Instantaneous power failure	151		E． II_{1}	E． 10	Converter transistor protection thermal operation （electronic thermal）	158				
	Eillió	E．UVT	Undervoltage	151									
	$E \cdot 1$ EF	E．ILF＊	Input phase loss	151		E． 11	E． 11	Opposite rotation deceleration fault	158				
	E．OIL	E．OLT	Stall prevention stop	151									
	E．EI	E．GF	Output side earth（ground） fault overcurrent	152		E．İ	E． 13	Internal circuit fault	158				
						E．İ	E． 15	Converter circuit fault	158				
	E．if	E．LF	Output phase loss	152	If an error occurs when using the FR－PU04，＂Fault 14＂is displayed on the FR－PU04．								
	E．EMir	E．OHT	External thermal relay operation＊2	152									

5.3 Causes and corrective actions

(1) Error message

A message regarding operational troubles is displayed. Output is not shut off.

Operation Panel Indication	HOLD	Operation panel lock
Name	Operation lock mode is set. Operation other than $\left(\frac{5 T O P}{\text { RISEI }}\right.$ is invalid. (Refer to page 50.)	
Description		
Check point		
Corrective action	Press MODE	for 2s to release lock.

Operation Panel Indication	LOCd				
Name	Password locked				
Description	Password function is active. Display and setting of parameter is restricted.				
Check point					
Corrective action	Enter the password in Pr. 297 Password lock/unlock to unlock the password function before operating. (Refer to Chapter 4 of the Instruction Manual (Applied).)				

Operation Panel Indication	Er1	ETi
Name	Write disable error	
Description	- You attempted to make parameter setting when Pr. 77 Parameter write selection has been set to disable parameter write. - Frequency jump setting range overlapped. - Adjustable 5 points V/F settings overlapped - The PU and inverter cannot make normal communication	
Check point	- Check the setting of Pr. 77 Parameter write selection (Refer to Chapter 4 of the Instruction Manual (Applied).) - Check the settings of Pr. 31 to 36 (frequency jump). (Refer to Chapter 4 of the Instruction Manual (Applied).) - Check the settings of Pr. 100 to Pr. 109 (adjustable 5 points V/F). (Refer to Chapter 4 of the Instruction Manual (Applied).) - Check the connection of the PU and inverter.	

Operation Panel Indication	Er2	Write error during operation
Name	When parameter write was performed during operation with a value other than "2" (writing is enabled independently of operating status in any operation mode) is set in Pr. 77 and the STF (STR) is on.	
Description	- Check the Pr. 77 setting. (Refer to Chapter 4 of - Check that the inverter is not operating.	
Check point Instruction Manual (Applied).)		
Corrective action	- Set "2" in Pr. 77. - After stopping operation, make parameter setting.	

Operation Panel Indication	Er3
Name	Calibration error
Description	Analog input bias and gain calibration values are too close.
Check point	Check the settings of C3, C4, C6 and C7 (calibration functions). (Refer to Chapter 4 of the Instruction Manual (Applied).)

Operation Panel Indication	Er4	1
Name	Mode designation error	
Description	- You attempted to make parameter setting in the NET operation mode when Pr. 77 is not " 2 ". - Appears if a parameter setting is attempted in the External or NET operation mode with Pr. $77 \neq$ " 2 ". - Appears if a parameter setting is attempted when the command source is not at the operation panel. (FR-DU07).	
Check point	- Check that operation mode is "PU operation mode". - Check the Pr. 77 setting. (Refer to Chapter 4 of the Instruction Manual (Applied).) - Check the Pr. 551 setting.	
Corrective action	- After setting the operation mode to "PU operation mode", make parameter setting. (Refer to page 62.) - After setting Pr. $77=$ " 2 ", make parameter setting. - Set Pr. $551=$ " 2 (initial setting)". (Refer to Chapter 4 of the Instruction Manual (Applied).)	

Operation Panel Indication	rE1				
Name	Parameter read error				
Description	An error occurred in the EEPROM on the operation panel side during parameter copy reading.				
Check point					
Corrective action	- Make parameter copy again. (Refer to page 54.) - Check for an operation panel (FR-DU07) failure. Please contact your sales representative.				

Operation Panel Indication	rE2
Name	Parameter write error
Description	• You attempted to perform parameter copy write during operation. - An error occurred in the EEPROM on the operation panel side during parameter copy writing.
Check point	Is the FWD or REV LED of the operation panel (FR-DU07) lit or flickering?
Corrective action	• After stopping operation, make parameter copy again. (Refer to page 54.) - Check for an operation panel (FR-DU07) failure. Please contact your sales representative.

Operation Panel Indication	rE3
Name	Parameter verification error
Description	- Data on the operation panel side and inverter side are different. - An error occurred in the EEPROM on the operation panel side during parameter verification.
Check point	Check for the parameter setting of the source inverter and inverter to be verified.
Corrective action	- Press SET to continue verification. Make parameter verification again. (Refer to page 55.) - Check for an operation panel (FR-DUO7) failure. Please contact your sales representative.

Operation Panel Indication	rE4
Name	Model error
Description	- A different model was used for parameter write and verification during parameter copy. - When parameter copy write is stopped after parameter copy read is stopped
Check point	- Check that the verified inverter is the same model. - Check that the power is not turned OFF or an operation panel is not disconnected, etc. during parameter copy read.
Corrective action	- Use the same model (FR-A701 series) for parameter copy and verification. - Perform parameter copy read again.

Operation Panel Indication	Err.
Description	- The RES signal is ON - The PU and inverter cannot make normal communication (contact fault of the connector) - When the voltage drops in the inverter's input side. - When the control circuit power (R1/L11, S1/L21) and the main circuit power (R/L1, S/L2, T/L3) are connected to a separate power, it may appear at turning ON of the main circuit. It is not a fault.
Corrective action	- Turn OFF the RES signal. - Check the connection of the PU and inverter. - Check the voltage on the inverter's input side.

(2) Warning

When the protective circuit is activated, the output is not shut off.

Operation Panel Indication	OL		FR-PU04 FR-PU07	OL
Name	Stall prevention (overcurrent)			
Description	During acceleration	When the output current (output torque during Real sensorless vector control or vector control) of the inverter exceeds the stall prevention operation level (Pr. 22 Stall prevention operation level, etc.), this function stops the increase in frequency until the overload current decreases to prevent the inverter from resulting in overcurrent trip. When the overload current has decreased below stall prevention operation level, this function increases the frequency again.		
	During constant speed operation	When the output current (output torque during Real sensorless vector control or vector control) of the inverter exceeds the stall prevention operation level (Pr. 22 Stall prevention operation level, etc.), this function reduces frequency until the overload current decreases to prevent the inverter from resulting in overcurrent trip. When the overload current has decreased below stall prevention operation level, this function increases the frequency up to the set value.		
	During deceleration	When the output current (output torque during Real sensorless vector control or vector control) of the inverter exceeds the stall prevention operation level (Pr. 22 Stall prevention operation level, etc.), this function stops the decrease in frequency until the overload current decreases to prevent the inverter from resulting in overcurrent trip. When the overload current has decreased below stall prevention operation level, this function decreases the frequency again.		
Check point	- Check that the Pr. 0 Torque boost setting is not too large. - Check that the Pr. 7 Acceleration time and Pr. 8 Deceleration time settings are not too small. - Check that the load is not too heavy. - Are there any failure in peripheral devices? - Check that the Pr. 13 Starting frequency is not too large. - Check the motor for use under overload. - Check that the Pr. 22 Stall prevention operation level is appropriate.			
Corrective action	- Increase or decrease the Pr. 0 Torque boost value 1% by 1% and check the motor status. (Refer to page 59.) - Set a larger value in Pr. 7 Acceleration time and Pr. 8 Deceleration time. (Refer to page 61.) - Reduce the load weight. - Try Advanced magnetic flux vector control, Real sensorless vector control or vector control. - Change the Pr. 14 Load pattern selection setting. - Set stall prevention operation current in Pr. 22 Stall prevention operation level. (The initial value is 150%.) The acceleration/deceleration time may change. Increase the stall prevention operation level with Pr. 22 Stall prevention operation level, or disable stall prevention with Pr. 156 Stall prevention operation selection. (Use Pr. 156 to set either operation continued or not at OL operation.)			

Operation Panel Indication	oL	Ei	$\begin{aligned} & \text { FR-PU04 } \\ & \text { FR-PU07 } \end{aligned}$	oL
Name	Stall prevention (overvoltage)			
Description	During deceleration	- If the regenerative energy of the motor becomes excessive and exceeds the regenerative energy consumption capability, this function stops the decrease in frequency to prevent overvoltage trip. As soon as the regenerative energy has decreased, deceleration resumes. - If the regenerative energy of the motor becomes excessive when regeneration avoidance function is selected (Pr. $882=1$), this function increases the speed to prevent overvoltage trip. (Refer to Chapter 4 of the Instruction Manual (Applied).)		
Check point	- Check for sudden speed reduction. - Regeneration avoidance function (Pr. 882 to Pr. 886) is being used? (Refer to Chapter 4 of 且 the Instruction Manual (Applied).)			
Corrective action	The deceleration time may change. Increase the deceleration time using Pr. 8 Deceleration time.			

Operation Panel Indication	PS	E®	$\begin{aligned} & \text { FR-PU04 } \\ & \text { FR-PU07 } \end{aligned}$	PS
Name	PU stop			
Description	Stop with $\frac{\text { STOP }}{\text { RISEII }}$) of the PU is set in Pr. 75 Reset selection/disconnected PU detection/PU stop selection. (For Pr. 75, refer to Chapter 4 of the Instruction Manual (Applied).)			
Check point	Check for a stop made by pressing of the operation panel.			
Corrective action	Turn the start signal off and release with $\frac{P U}{E X T}$.			

| Operation Panel
 Indication | TH | FR-PU04
 FR-PU07 | TH |
| :---: | :--- | :--- | :--- | :--- |
| Name | Electronic thermal relay function prealarm | | |
| Description | Appears if the cumulative value of the Pr. 9 Electronic thermal O/L relay reaches or exceeds 85% of the
 preset level. If it reaches 100% of the Pr. 9 Electronic thermal O/L relay setting, a motor overload trip (E.
 THM) occurs.
 The THP signal can be simultaneously output with the [TH] display. For the terminal used for the THP
 signal output, assign the function by setting "8" (positive logic) or "108" (negative logic) in any of Pr. 190
 to Pr. 196 (output terminal function selection). (Refer to Chapter 4 of | | |
| Check point | - Check for large load or sudden acceleration.
 - Is the Pr. 9 Electronic thermal O/L relay setting is appropriate? (Refer to page 57.) | | |
| Corrective action | - Reduce the load weight or the number of operation times.
 - Set an appropriate value in Pr. 9 Electronic thermal O/L relay. (Refer to page 57.) | | |

Operation Panel Indication	MT		FR-PU04	-
			FR-PU07	MT
Name	Maintenance signal output			
Description	Indicates that the cumulative energization time of the inverter has reached a given time. When the setting of Pr. 504 Maintenance timer alarm output set time is the initial value (Pr. $504=$ " 9999 "), this protective function does not function.			
Check point	The Pr. 503 Maintenance timer setting is larger than the Pr. 504 Maintenance timer alarm output set time setting. (Refer to Chapter 4 of the Instruction Manual (Applied).)			
Corrective action	Setting "0" in Pr. 503 Maintenance timer erases the signal.			

| Operation Panel
 Indication | $\mathbf{C P}$ | FR-PU04 | - |
| :---: | :--- | :--- | :--- | :--- |
| | FR-PU07 | $\mathbf{C P}$ | |
| Name | Parameter copy | | |
| Description | Displayed when parameters are copied between the FR-A701 series and FR-A700 series 75K or
 higher. | | |
| Check point | Check that parameters are not copied between the FR-A701 series and FR-A700 series 75K or higher. | | |
| Corrective action | Copy between the same FR-A701 series. | | |

| Operation Panel
 Indication | SL | FR-PU04 | - |
| :---: | :--- | :--- | :--- | :--- |
| | Speed limit indication (output during speed limit) | | |
| Name | Output if the speed limit level is exceeded during torque control. | | |
| Description | O Check that the torque command is not larger than required.
 - Check that the speed limit level is not low. | | |
| Check point | | | |
| Corrective action | - Decrease the torque command.
 - Increase the speed limit level. | | |

(3) Alarm

When an alarm occurs, the output is not shut off. You can also output an alarm signal by making parameter setting. (Set "98" in any of Pr. 190 to Pr. 196 (output terminal function selection). (Refer to Chapter 4 of the Instruction Manual (Applied).))

Operation Panel Indication	FN	FR-PU04 FR-PU07	FN
Name	Fan alarm		
Description	For the inverter that contains a cooling fan, stops due to a fault or different operation from the setting of Pr. 244 Cooling fan operation selection.		
Check point	Check the cooling fan for a fault.		
Corrective action	Check for fan fault. Please contact your sales representative.		

(4) Fault

When a fault occurs, the inverter trips and a fault signal is output.

Operation Pa Indication	E.OC1			OC During Acc
Name	Overcurrent trip during acceleration			
Description	When the inverter output current reaches or exceeds approximately 220% of the rated current during acceleration, the protective circuit is activated to stop the inverter output.			
Check point	- Check for sudden acceleration. - Check that the downward acceleration time is not long for lift. - Check for output short circuit. - Check that the Pr. 3 Base frequency setting is not 60 Hz when the motor rated frequency is 50 Hz . - Check if the stall prevention operation level is set too high. - Check if the fast-response current limit operation is disabled. - Check that the regeneration is not performed frequently. (Check that the output voltage becomes larger than the V/F reference voltage at regeneration and overcurrent due to increase in motor current occurs.) - Check that the power supply for RS-485 terminal is not shorted. (under vector control) - Check that the rotation direction is not switched from forward to reverse rotation (or from reverse to forward) during torque control under Real sensorless vector control. - Check if a start command is given to the inverter while the motor is coasting.			
Corrective action	- Increase the acceleration time. (Shorten the downward acceleration time for lift.) - When "E.OC1" is always lit at starting, disconnect the motor once and start the inverter. If "E.OC1" is still lit, contact your sales representative. - Check the wiring to make sure that output short circuit does not occur. - Set the Pr. 3 Base frequency to 50 Hz . (Refer to page 58 .) - Lower the setting of stall prevention operation level. (Refer to Chapter 4 of Instruction Manual (Applied).) - Activate the fast-response current limit operation. - Set base voltage (rated voltage of the motor, etc.) in Pr. 19 Base frequency voltage. (Refer to Chapter 4 of the Instruction Manual (Applied).) - Check RS-485 terminal connection. (under vector control) - Prevent the motor from switching the rotation direction from forward to reverse (or from reverse to forward) during torque control under Real sensorless vector control. - Input a start command after the motor stops. Alternatively, set the automatic restart after instantaneous power failure/flying start function. (Refer to Chapter 4 of the Instruction Manual (Applied).)			

Operation Panel Indication	E.OC2	E.15	FR-PU04 FR-PU07	Stedy Spd OC
Name	Overcurrent trip during constant speed			
Description	When the inverter output current reaches or exceeds approximately 220% of the rated current during constant speed operation, the protective circuit is activated to stop the inverter output.			
Check point	- Check for sudden load change. - Check for output short circuit. - Check if the stall prevention operation level is set too high. - Check if the fast-response current limit operation is disabled. - Check that the power supply for RS-485 terminal is not shorted. (under vector control) - Check that the rotation direction is not switched from forward to reverse rotation (or from reverse to forward) during torque control under Real sensorless vector control. - Check if a start command is given to the inverter while the motor is coasting.			
Corrective action	- Keep load stable. - Check the wiring to make sure that output short circuit does not occur. - Lower the setting of stall prevention operation level. (Refer to Chapter 4 of the Instruction Manual (Applied).) - Activate the fast-response current limit operation. - Check RS-485 terminal connection. (under vector control) - Prevent the motor from switching the rotation direction from forward to reverse (or from reverse to forward) during torque control under Real sensorless vector control. - Input a start command after the motor stops. Alternatively, set the automatic restart after instantaneous power failure/flying start function. (Refer to Chapter 4 of the Instruction Manual (Applied).)			

| Operation Panel
 Indication | E.OC3 | Overcurrent trip during deceleration or stop |
| :---: | :--- | :--- | :--- |
| Name | When the inverter output current reaches or exceeds approximately 220% of the rated inverter current during
 deceleration (other than acceleration or constant speed), the protective circuit is activated to stop the inverter
 output. | |
| Description | | |
| - Check for sudden speed reduction. | | |
| - Check for output short circuit. | | |
| - Check for too fast operation of the motor's mechanical brake. | | |
| - Check if the stall prevention operation level is set too high. | | |
| - Check if the fast-response current limit operation is disabled. | | |
| - Check that the power supply for RS-485 terminal is not shorted. (under vector control) | | |
| - Check that the rotation direction is not switched from forward to reverse rotation (or from reverse to | | |
| forward) during torque control under Real sensorless vector control. | | |
| - Check if a start command is given to the inverter while the motor is coasting. | | |

| Operation Panel
 Indication | E.OV1 | FR-PU04
 FR-PU07 | OV During Acc |
| :---: | :--- | :--- | :--- | :--- |
| Name | Regenerative overvoltage trip during acceleration | | |
| Description | If regenerative energy causes the inverter's internal main circuit DC voltage to reach or exceed the
 specified value, the protective circuit is activated to stop the inverter output. The circuit may also be
 activated by a surge voltage produced in the power supply system. Protective circuit may activate even
 if the regeneration converter is not activated due to power supply failure (Input phase failure and
 instantaneous power failure). | | |
| Check point | - Check for power supply fault or wrong wiring.
 - Check for too slow acceleration. (e.g. during descending acceleration in vertical lift load)
 - Check that the Pr. 22 Stall prevention operation level is not lower than the no load current. | | |
| Corrective action | - Perform wiring correctly.
 - Decrease the acceleration time.
 - Use regeneration avoidance function (Pr. 882 to Pr. 886). (Refer to Chapter 4 of
 - Manual (Applied). $)$ | | |
| Set a value larger than the no load current in Pr. 22 Stall prevention operation level. | | | |

Operation Panel Indication	E.OV2	FR-PU04 FR-PU07	Stedy Spd OV
Name	Regenerative overvoltage trip during constant speed		
Description	If regenerative energy causes the inverter's internal main circuit DC voltage to reach or exceed the specified value, the protective circuit is activated to stop the inverter output. The circuit may also be activated by a surge voltage produced in the power supply system. Protective circuit may activate even if the regeneration converter is not activated due to power supply failure (Input phase failure and instantaneous power failure).		
Check point	- Check for power supply fault or wrong wiring. - Check for sudden load change. - Check that the Pr. 22 Stall prevention operation level is not lower than the no load current.		
Corrective action	- Perform wiring correctly. - Keep load stable. - Use regeneration avoidance function (Pr. 882 to Pr. 886). (Refer to Chapter 4 of - Manual (Applied). - Set a value larger then the no load current in Pr. 22 Stall prevention operation level.		

Operation Panel Indication	E.OV3	FR-PU04 FR-PU07	OV During Dec
Name	Regenerative overvoltage trip during deceleration or stop		
Description	If regenerative energy causes the inverter's internal main circuit DC voltage to reach or exceed the specified value, the protective circuit is activated to stop the inverter output. The circuit may also be activated by a surge voltage produced in the power supply system. Protective circuit may activate even if the regeneration converter is not activated due to power supply failure (Input phase failure and instantaneous power failure).		
Check point	- Check for power supply fault or wrong wiring. - Check for sudden speed reduction.		
Corrective action	- Perform wiring correctly. - Increase the deceleration time. (Set the deceleration time which matches the moment of inertia of the load) - Decrease the braking duty. - Use regeneration avoidance function (Pr. 882 to Pr. 886). (Refer to Chapter 4 of Manual (Applied).)		

Operation Panel Indication	E.THT	FR-PU04 FR-PU07	Inv. Overload
Name	Inverter overload trip (electronic thermal relay function) *1		
Description	If a current not less than 150\% of the rated output current flows and overcurrent trip does not occur (220\% or less), the electronic thermal relay activate to stop the inverter output in order to protect the output transistors. (Overload capacity 150% 60s inverse-time characteristics)		
Check point	- Check that acceleration/deceleration time is not too short. - Check that torque boost setting is not too large (small). - Check that load pattern selection setting is appropriate for the load pattern of the using machine. - Check the motor for use under overload.		
Corrective action	- Increase acceleration/deceleration time. - Adjust the torque boost setting. - Set the load pattern selection setting according to the load pattern of the using machine. - Reduce the load weight.		

Operation Panel Indication	E.THM	$E .1519$	$\begin{aligned} & \text { FR-PU04 } \\ & \text { FR-PU07 } \end{aligned}$	Motor Ovrload
Name	Motor overload trip (electronic thermal relay function) *1			
Description	The electronic thermal relay function in the inverter detects motor overheat due to overload or reduced cooling capability during constant speed operation and pre-alarm (TH display) is output when the $I^{2} t$ value reaches 85% of the Pr. 9 Electronic thermal O/L relay setting and the protection circuit is activated to stop the inverter output when the $I^{2} t$ value reaches the specified value. When running a special motor such as a multi-pole motor or two motors, provide a thermal relay on the inverter output side since such motor(s) cannot be protected by the electronic thermal relay function.			
Check point	- Check the motor for use under overload. - Check that the setting of Pr. 71 Applied motor for motor selection is correct. (Refer to Chapter 4 of the Instruction Manual (Applied).) - Check that stall prevention operation setting is correct.			
Corrective action	- Reduce the load weight. - For a constant-torque motor, set the constant-torque motor in Pr. 71 Applied motor. - Check that stall prevention operation setting is correct. (Refer to Chapter 4 of the Instruction Manual (Applied).)			

*1 Resetting the inverter initializes the internal thermal integrated data of the electronic thermal relay function.

Operation Panel Indication	E.FIN	EE:	$\begin{aligned} & \text { FR-PU04 } \\ & \text { FR-PU07 } \end{aligned}$	H/Sink O/Temp
Name	Heatsink overheat			
Description	If the heatsink overheats, the temperature sensor is actuated to stop the inverter output. The FIN signal can be output when the temperature becomes approximately 85% of the heatsink overheat protection operation temperature. For the terminal used for the FIN signal output, assign the function by setting "26" (positive logic) or "126" (negative logic) in any of Pr. 190 to Pr. 196 (output terminal function selection). (Refer to Chapter 4 of the Instruction Manual (Applied))			
Check point	- Check for too high surrounding air temperature. - Check for heatsink clogging. - Check that the cooling fan is stopped. (Check that \boldsymbol{F}_{n} is displayed on the operation panel.)			
Corrective action	- Set the surrounding air temperature to within the specifications. - Clean the heatsink. - Replace the cooling fan.			

Operation Panel Indication	E.IPF	-15	FR-PU04 FR-PU07	Inst. Pwr. Loss
Name	Instantaneous power failure			
Description	If a power failure occurs for longer than 15 ms (this also applies to inverter input shut-off), the instantaneous power failure protective function is activated to trip the inverter in order to prevent the control circuit from malfunctioning. If a power failure persists for longer than 100 ms , the fault output is not provided, and the inverter restarts if the start signal is on upon power restoration. (The inverter continues operating if an instantaneous power failure is within 15 ms .) In some operating status (load magnitude, acceleration/deceleration time setting, etc.), overcurrent or other protection may be activated upon power restoration. When instantaneous power failure protection is activated, the IPF signal is output. (Refer to Chapter 4 of the Instruction Manual (Applied))			
Check point	Find the cause of instantaneous power failure occurrence.			
Corrective action	- Remedy the instantaneous power failure. - Prepare a backup power supply for instantaneous power failure. - Set the function of automatic restart after instantaneous power failure (Pr. 57). (Refer to Chapter 4 of the Instruction Manual (Applied) .)			

| Operation Panel
 Indication | E.UVT | FR-PU04
 FR-PU07 | Under Voltage |
| :---: | :--- | :--- | :--- | :--- |
| Name | Undervoltage | | |
| Description | If the power supply voltage of the inverter decreases, the control circuit will not perform normal functions.
 In addition, the motor torque will be insufficient and/or heat generation will increase. To prevent this, if
 the power supply voltage decreases below about 150VAC (300VAC for the 400V class), this function
 stops the inverter output.
 When undervoltage protection is activated, the IPF signal is output. (Refer to Chapter 4 of
 Instruction Manual (Applied)) the | | |
| Check point | Check for start of large-capacity motor. | | |
| Corrective action | - Check the power supply system equipment such as the power supply.
 - If the problem still persists after taking the above measure, please contact your sales representative. | | |

Operation Panel Indication	E.ILF	FR-PU04	Fault 14		
Name	Input phase loss				
Description	This fault is output when function valid setting ($=1$) is set in Pr. 872 Input phase loss protection selection and one phase of the three phase power input is lost. (If the input power voltage is less than 100VAC, the inverter may detect an input phase loss (E.ILF).) (Refer to Chapter 4 of (Applied). $)$				
Check point	Check for a break in the cable for the three-phase power supply input.				
Corrective action Manual					- Wire the cables properly.
:---					
- Repair a break portion in the cable.					
- Check the Pr. 872 Input phase loss protection selection setting.					

Operation Panel Indication	E.OLT	101	FR-PU04 FR-PU07	StII Prev STP (OL shown during stall prevention operation)
Name	Stall prevention stop			
Description	If the frequency has fallen to 0.5 Hz by stall prevention operation and remains for 3 s , a fault (E.OLT) appears and trips the inverter. OL appears while stall prevention is being activated. When speed control is performed by Real sensorless vector control or vector control, a fault (E.OLT) is displayed and the inverter output is stopped if frequency drops to the Pr. 865 Low speed detection (initial value is 1.5 Hz) setting by torque limit operation and the output torque exceeds Pr. 874 OLT level setting (initial value is 150%) setting and remains for more than 3 s .			
Check point	- Check the motor for use under overload. (Refer to Chapter 4 of the Instruction Manual (Applied) .) - Check that the Pr. 865 Low speed detection and Pr. 874 OLT level setting values are correct. (Check the Pr. 22 Stall prevention operation level setting if V/F control is exercised.)			
Corrective action	- Reduce the load weight. - Change the Pr. 22 Stall prevention operation level, Pr. 865 Low speed detection and Pr. 874 OLT level setting values. (Check the Pr. 22 Stall prevention operation level setting if V/F control is exercised.)			

| Operation Panel
 Indication | E.GF | FR-PU04
 FR-PU07 | Ground Fault |
| :---: | :--- | :---: | :---: | :--- |
| Name | Output side earth (ground) fault overcurrent | | |
| Description | This function stops the inverter output if an earth (ground) fault overcurrent flows due to an earth
 (ground) fault that occurred on the inverter's output (load) side. | | |
| Check point | Check for an earth (ground) fault in the motor and connection cable. | | |
| Corrective action | Remedy the earth (ground) fault portion. | | |

Operation Panel Indication	E.LF	FR-PU04 FR-PU07	E. LF
Name	Output phase loss		
Description	This function stops the inverter output if one of the three phases (U, V, W) on the inverter's output side (load side) is lost.		
Check point	- Check the wiring (Check that the motor is normal.) - Check that the capacity of the motor used is not smaller than that of the inverter. - Check if a start command is given to the inverter while the motor is coasting.		
Corrective action	- Wire the cables properly. - Check the Pr. 251 Output phase loss protection selection setting. - Input a start command after the motor stops. Alternatively, set the automatic restart after instantaneous power failureflying start function. (Refer to Chapter 4 of (Applied).)		

| Operation Panel
 Indication | E.OHT | FR-PU04
 FR-PU07 | OH Fault |
| :---: | :--- | :--- | :--- | :--- |
| Name | External thermal relay operation | | |
| Description | If the external thermal relay provided for motor overheat protection, or the internally mounted
 temperature relay in the motor, etc. switches on (contacts open), the inverter output is stopped.
 This function is available when "7" (OH signal) is set in any of Pr. 178 to $\operatorname{Pr.} 189$ (input terminal function
 selection).
 When the initial value (without OH signal assigned) is set, this protective function is not available. | | |
| Check point | - Check for motor overheating.
 - Check that the value of 7 (OH signal) is set correctly in any of $\operatorname{Pr.~} 178$ to Pr. 189 (input terminal function selection). | | |
| Corrective action | - Reduce the load and operating duty.
 - Even if the relay contacts are reset automatically, the inverter will not restart unless it is reset. | | |

Operation Panel Indication	E.OPT	E.EOM	FR-PU04 FR-PU07	Option Fault
Name	Option fault			
Description	- Appears when torque command by the plug-in option is selected using Pr. 804 Torque command source selection selection and no plug-in option is mounted. This function is available under Real sensorless vector control. - Appears when the switch for the manufacturer setting of the plug-in option is changed. - Appears when a communication option is connected while Pr. $296=00$ or 100."			
Check point	- Check that the plug-in option for torque command setting is connected. - Check for the password lock with a setting of Pr. $296=$ " $0,100 "$			
Corrective action	- Check for connection of the plug-in option. Check the Pr. 804 Torque command source selection setting. - Return the switch for the manufacturer setting of the plug-in option to the initial status. (Refer to instruction manual of each option) - To apply the password lock when installing a communication option, set Pr. $296 \neq$ " 0,100 ". (Refer to Chapter 4 of the Instruction Manual (Applied).)			

Operation Panel Indication	E.OP3	Erios	FR-PU04 FR-PU07	Option 3 Fault
Name	Communication option fault			
Description	Stops the inverter output when a communication line error occurs in the communication option.			
Check point	- Check for a wrong option function setting and operation. - Check that the plug-in option is plugged into the connector securely. - Check for a break in the communication cable. - Check that the terminating resistor is fitted properly.			
Corrective action	- Check the option function setting, etc. - Connect the plug-in option securely. - Check the connection of communication cable.			

Operation Panel Indication	$\begin{gathered} \text { E. } 1 \text { to } \\ \text { E. } 3 \end{gathered}$	E.	FR-PU04 FR-PU07	Fault 1 to Fault 3
Name	Option fault			
Description	Stops the inverter output if a contact fault, etc. of the connector between the inverter and plug-in option occurs or if a communication option is fitted to the connector 1 or 2. Appears when the switch for the manufacturer setting of the plug-in option is changed.			
Check point	- Check that the plug-in option is plugged into the connector securely. (1 to 3 indicate the option connector numbers.) - Check for excess electrical noises around the inverter. - Check that the communication option is not fitted to the connector 1 or 2.			
Corrective action	- Connect the plug-in option securely. - Take measures against noises if there are devices producing excess electrical noises around the inverter. If the problem still persists after taking the above measure, please contact your sales representative or distributor. - Fit the communication option to the connector 3. - Return the switch for the manufacturer setting of the plug-in option to the initial status. (Refer to Instruction Manual of each option)			

| Operation Panel
 Indication | E.PE | FR-PU04
 FR-PU07 | Corrupt Memry |
| :---: | :--- | :--- | :--- | :--- |
| Name | Parameter storage device fault (control circuit board) | | |
| Description | Stops the inverter output if fault occurred in the parameter stored. (EEPROM failure) | | |
| Check point | Check for too many number of parameter write times. | | |
| Corrective action | Please contact your sales representative.
 When performing parameter write frequently for communication purposes, set "1" in Pr. 342 to enable
 RAM write. Note that powering off returns the inverter to the status before RAM write. | | |

Operation Panel Indication	E．PE2	E゙にに	FR－PU04	Fault 14
			FR－PU07	PR storage alarm
Name	Parameter storage device fault（main circuit board）			
Description	Stops the inverter output if fault occurred in the parameter stored．（EEPROM failure）			
Check point	－＿＿			
Corrective action	Please contact your sales representative．			

| Operation Panel
 Indication | E．PUE | FR－PU04
 FR－PU07 | PU Leave Out |
| :---: | :--- | :--- | :--- | :--- |
| Name | PU disconnection | | |
| Description | －This function stops the inverter output if communication between the inverter and PU is suspended，
 e．g．the operation panel and parameter unit is disconnected，when＂ 2 ＂，＂ 3 ＂，＂16＂or＂17＂was set in Pr．
 75 Reset selection／disconnected PU detection／PU stop selection．
 －This function stops the inverter output when communication errors occurred consecutively for more
 than permissible number of retries when a value other than＂9999＂is set in Pr． 121 Number of PU
 communication retries during the RS－485 communication with the PU connector．
 －This function stops the inverter output if communication is broken within the period of time set in Pr．
 122 PU communication check time interval during the RS－485 communication with the PU connector． | | |
| Check point | －Check that the FR－DU07 or parameter unit（FR－PU04／FR－PU07）is fitted tightly．
 －Check the Pr． 75 setting． | | |
| Corrective action | Fit the FR－DU07 or parameter unit（FR－PU04／FR－PU07）securely． | | |

| Operation Panel
 Indication | E．RET | FR－PU04
 FR－PU07 | Retry No Over |
| :---: | :--- | :--- | :--- | :--- |
| Name | Retry count excess | | |
| Description | If operation cannot be resumed properly within the number of retries set，this function trips the inverter．
 This function is available only when Pr． 67 Number of retries at fault occurrence is set．When the initial
 value（Pr． $67=0 ")$ is set，this protective function is not available． | | |
| Check point | Find the cause of alarm occurrence． | | |
| Corrective action | Eliminate the cause of the error preceding this error indication． | | |

Operation Panel Indication	E． 5	E	FR－PU04 FR－PU07	Fault 5
	E． 6	E E		Fault 6
	E． 7	$E \quad 17$		Fault 7
	E．CPU	E．EI！		CPU Fault
Name	CPU fault			
Description	Stops the inverter output if the communication error of the built－in CPU occurs．			
Check point	Check for devices producing excess electrical noises around the inverter．			
Corrective action	－Take measures against noises if there are devices producing excess electrical noises around the inverter． －Please contact your sales representative．			

Operation Panel Indication	E．CTE	FR－PU04	-
Name	Operation panel power supply short circuit，RS－485 terminal power supply short circuit		
Description	When the operation panel power supply（PU connector）is shorted，this function shuts off power output and stops the inverter output．At this time，the operation panel（parameter unit）cannot be used and RS－485 communication from the PU connector cannot be made．When the internal power supply for the RS－485 terminals are shorted，this function shuts off the power output． At this time，communication from the RS－485 terminals cannot be made． To reset，enter the RES signal or switch power off，then on again．		
Check point	－Check for a short circuit in the PU connector cable． －Check that the RS－485 terminals are connected correctly．		
Corrective action	－Check the PU and cable． －Check the connection of the RS－485 terminals		

| Operation Panel
 Indication | E.MB1 to 7 | Frake sequence fault |
| :---: | :--- | :--- | :--- | :--- |
| Name | The inverter output is stopped when a sequence error occurs during use of the brake sequence
 function (Pr. 278 to Pr. 285). This fault is not available in the initial status (brake sequence function is
 invalid). (Refer to Chapter 4 of | |
| Description the Instruction Manual (Applied).) | | |

| Operation Panel
 Indication | E.OS | Overspeed occurrence |
| :---: | :--- | :--- | :--- | :--- |
| Name | OR-PU04
 FR-PU07 | E. OS |
| Description | Stops the inverter output when the motor speed exceeds the Pr. 374 Overspeed detection level during
 encoder feedback control Real sensorless vector control and vector control. This fault is not available
 in the initial status. | |
| Check point | - Check that the Pr. 374 Overspeed detection level value is correct.
 - Check that the number of encoder pulses does not differ from the actual number of encoder pulses. | |
| Corrective action | - Set the Pr. 374 Overspeed detection level value correctly.
 - Set the correct number of encoder pulses in Pr. 369 Number of encoder pulses. | |

Operation Panel Indication	E.OSD	FR-PU04 FR-PU07	E. OSd		
Name	Speed deviation excess detection				
Description	Stops the inverter output if the motor speed is increased or decreased under the influence of the load etc. during vector control with Pr. 285 Speed deviation excess detection frequency set and cannot be controlled in accordance with the speed command value. This fault is not available in the initial status.				
Check point	- Check that the values of Pr. 285 Speed deviation excess detection frequency and Pr. 853 Speed deviation - Cime are correct. - Check for sudden load change.				
Corrective action the number of encoder pulses does not differ from the actual number of encoder pulses.				\quad	- Set Pr. 285 Speed deviation excess detection frequency and Pr. 853 Speed deviation time correctly.
:---					
- Keep load stable.					
- Set the correct number of encoder pulses in Pr. 369 Number of encoder pulses.					

Operation Panel Indication	E.ECT	FR-PU04 FR-PU07	E. ECT
Name	Signal loss detection		
Description	Trips the inverter when the encoder signal is shut off under orientation control, encoder feedback control or vector control. This fault is not available in the initial status.		
Check point	- Check for the encoder signal loss. - Check that the encoder specifications are correct. - Check for a loose connector. - Check that the switch setting of the FR-A7AP/FR-A7AL (option) is correct. - Check that the power is supplied to the encoder. Or, check that the power is not supplied to the encoder later than the inverter.		
Corrective action	- Remedy the signal loss. - Use an encoder that meets the specifications. - Make connection securely. - Make a switch setting of the FR-A7AP/FR-A7AL (option) correctly. (Refer to page 29) - Supply the power to the encoder. Or supply the power to the encoder at the same time when the power is supplied to the inverter. If the power is supplied to the encoder after the inverter, check that the encoder signal is securely sent and set "0" in Pr. 376.		

Operation Panel Indication	E.OD	E. EiOC	FR-PU04 FR-PU07	Fault 14
				E. Od
Name	Excessive position fault			
Description	Stops the inverter output when the difference between the position command and position feedback exceeds Pr. 427 Excessive level error under position control. This fault is not available in the initial status.			
Check point	- Check that the position detecting encoder mounting orientation matches the parameter. - Check that the load is not large. - Check that the Pr. 427 Excessive level error and Pr. 369 Number of encoder pulses are correct.			
Corrective action	- Check the parameters. - Reduce the load weight. - Set the Pr. 427 Excessive level error and Pr. 369 Number of encod			

| Operation Panel
 Indication | E.EP | FR-PU04 | Fault 14 |
| :---: | :--- | :--- | :--- | :--- |
| Name | Encoder phase fault | | |
| Description | Stops the inverter output when the rotation command of the inverter differs from the actual motor
 rotation direction detected from the encoder. This fault is not available in the initial status. | | |
| Check point | - Check for mis-wiring of the encoder cable.
 - Check for wrong setting of Pr. 359 Encoder rotation direction. | | |
| Corrective action | - Perform connection and wiring securely.
 - Change the Pr. 359 Encoder rotation direction value. | | |

| Operation Panel
 Indication | E.P24 | FR-PU04
 FR-PU07 | E.P24 |
| :---: | :--- | :--- | :--- | :--- |
| Name | 24VDC power output short circuit | | |
| Description | When the 24VDC power output from the PC terminal is shorted, this function shuts off the power
 output.
 At this time, all external contact inputs switch off. The inverter cannot be reset by entering the RES
 signal. To reset it, use the operation panel or switch power off, then on again. | | |
| Check point | - Check for a short circuit in the PC terminal output. | | |
| Corrective action | - Remedy the earth (ground) fault portion. | | |

| Operation Panel
 Indication | E.CDO | FR-PU04 | Fault 14 |
| :---: | :--- | :--- | :--- | :--- |
| Name | Output current detection value exceeded | | |
| Description | Trips the inverter when the output current exceeds the setting of Pr. 150 Output current detection level.
 This function is available when Pr. 167 Output current detection operation selection is set to "1". When the
 initial value (Pr. $167=0 ")$ is set, this protective function is not available. | | |
| Check point | Check the settings of Pr. 150 Output current detection level, Pr. 151 Output current detection signal delay time,
 Pr. 166 Output current detection signal retention time, Pr. 167 Output current detection operation selection.
 (Refer to Chapter 4 of | | |

| Operation Panel
 Indication | E.IOH | FR-PU04 | Fault 14 |
| :---: | :--- | :--- | :--- | :--- |
| Name | Inrush current limit circuit fault | | |
| Description | Stops the inverter output when the resistor of inrush current limit circuit overheated. The inrush current
 limit circuit failure | | |
| Check point | - Check that frequent power ON/OFF is not repeated.
 - Check that the power supply circuit of inrush current limit circuit contactor is not damaged. | | |
| Corrective action | Configure a circuit where frequent power ON/OFF is not repeated.
 If the problem still persists after taking the above measure, please contact your sales representative. | | |

| Operation Panel
 Indication | E．SER | FR－PU04 | Fault 14 |
| :---: | :--- | :--- | :--- | :--- |
| Name | Communication fault（inverter） | FR－PU07 | VFD Comm error |
| Description | This function stops the inverter output when communication error occurs consecutively for more than
 permissible retry count when a value other than＂9999＂is set in $P r .335$ RS－485 communication retry count
 during RS－485 communication from the RS－485 terminals．This function also stops the inverter output if
 communication is broken for the period of time set in Pr． 336 RS－485 communication check time interval． | | |
| Check point | Check the RS－485 terminal wiring． | | |
| Corrective action | Perform wiring of the RS－485 terminals properly． | | |

| Operation Panel
 Indication | E．AIE | FR－PU04 | Fault 14 |
| :---: | :--- | :--- | :--- | :--- |
| Name | Analog input fault | | |
| Description | Stops the inverter output when a 30mA or higher current or a 7．5V or higher voltage is input to terminal
 2 while the current input is selected by Pr． 73 Analog input selection，or to terminal 4 while the current
 input is selected by Pr． 267 Terminal 4 input selection． | | |
| Check point | Check the setting of Pr． 73 Analog input selection，Pr． 267 Terminal 4 input selection and voltage／current
 input switch．（Refer to Chapter 4 of
 Corective Instruction Manual（Applied）．） | | |
| Correction | Either give a frequency command by current input or set Pr． 73 Analog input selection，Pr． 267 Terminal 4
 input selection，and voltage／current input switch to voltage input． | | |

Operation Panel Indication	E．USB	Eが心灾	FR－PU04	Fault 14
			FR－PU07	USB com
Name	USB communication fault			
Description	When the time set in Pr． 548 USB communication check time interval has broken，this function stops the inverter output．			
Check point	Check the USB communication cable．			
Corrective action	－Check the Pr． 548 USB communication check time interval setting． －Check the USB communication cable． －Increase the Pr． 548 USB communication check time interval setting．Or，change the setting to 9999. （Refer to Chapter 4 of the Instruction Manual（Applied））			

Operation Panel Indication	E．4	FR－PU04 FR－PU07	Fault 4
Name	Converter overcurrent		
Description	The current flows in the regeneration converter module exceeds the specified value，protective circuit activates and stops the inverter output．		
Check point	－Check that sudden acceleration／deceleration is not performed． －Check for sudden load change． －Check that wiring is correct． －Check that instantaneous power failure did not occur． －Check that the thyristor load does not exist in the same power supply system．		
Corrective action	－Increase acceleration／deceleration time． －Keep load stable． －Wire the cable properly． －When a thyristor load exist in the same power supply system，install an AC reactor（FR－HAL）．		

Operation Panel Indication	E． 8	FR－PU04 FR－PU07	Fault 8
Name	Power supply fault		
Description	－When overvoltage occurs in the converter side during input phase failure detection －When overvoltage occurs in the converter side during instantaneous power failure detection －When fault of power supply frequency is detected －When phase shift is not detected When any of the above conditions applied，it is judged as power supply and the inverter output is stopped．		
Check point	Check the power supply and wiring．		
Corrective action	Perform wiring correctly．		

| Operation Panel
 Indication | E.10 | FR-PU04
 FR-PU07 | Fault 10 |
| :---: | :--- | :--- | :--- | :--- |
| Name | Converter transistor protection thermal operation (electronic thermal) | | |
| Description | Current flowing in the module of the regeneration converter is less than the overcurrent shutoff level
 and exceeds the specified value, electronic thermal relay activates for protection and the inverter
 output is stopped. | | |
| Check point | - Check the motor for use under overload. (excess regeneration amount)
 - Check that the thyristor load does not exist in the same power supply system. | | |
| Corrective action | - Reduce the load weight.
 - When a thyristor load exists in the same power supply system, install an AC reactor (FR-HAL). | | |

| Operation Panel
 Indication | E.11 | FR-PU04 | Fault 11 |
| :---: | :--- | :--- | :--- | :--- |
| Name | Opposite rotation deceleration fault | | |
| Description | The speed may not decelerate during low speed operation if the rotation direction of the speed
 command and the estimated speed differ when the rotation is changing from forward to reverse or from
 reverse to forward during torque control under Real sensorless vector control. At this time, the inverter
 output is stopped if the rotation direction will not change, causing overload.
 This fault is not available in the initial status (V/F control). (It is available only during Real sensorless
 vector control.) | | |
| Check point | Check that the rotation direction is not switched from forward to reverse rotation (or from reverse to
 forward) during torque control under Real sensorless vector control. | | |
| Corrective action | - Prevent the motor from switching the rotation direction from forward to reverse (or from reverse to
 forward) during torque control under Real sensorless vector control.
 - Please contact your sales representative. | | |

Operation Panel Indication	E. 13	E. 19	$\begin{aligned} & \text { FR-PU04 } \\ & \text { FR-PU07 } \end{aligned}$	Fault 13
Name	Internal circuit fault			
Description	Stop the inverter output when an internal circuit fault occurred.			
Corrective action	Please contact your sales representative.			

| Operation Panel
 Indication | E.15 | FR-PU04
 FR-PU07 | Fault 15 |
| :---: | :--- | :--- | :--- | :--- |
| Name | Converter circuit fault | | |
| Description | - When a fault occurs in the peripheral circuit of the regeneration converter CPU
 - When a fault occurs in the control power supply circuit.
 - When a fault occurs in the inrush current limit circuit.
 If any of the above conditions applied, it is judged as converter circuit fault and the inverter output is
 stopped. | | |
| Check point | Check for devices producing excess electrical noises around the inverter. | | |
| Corrective action | - Take measures against noises if there are devices producing excess electrical noises around the
 inverter.
 - Please contact your sales representative. | | |

CAUTION

- If protective functions of E.ILF, E.PTC, E.PE2, E.EP, E.OD, E.CDO, E.IOH, E.SER, E.AIE, E.USB are activated when using the FR-PU04, "Fault 14" appears.
Also when the faults history is checked on the FR-PU04, the display is "E.14".
- If faults other than the above appear, contact your sales representative.

5.4 Correspondences between digital and actual characters

There are the following correspondences between the actual alphanumeric characters and the digital characters displayed on the operation panel.

Actual	Digital	Actual	Digital	Actual	Digital
0	9		1	M	17
	-	A	18	M	4
1	i	B	-1	N	-1,
2	,-1	C	1	0	10
3	7	D	-1	0	
	,		-		-
4	-	E	$1-$	P	, 1
5	6	F	$1-$	S	17
6	-1-1	G	-1	T	1
7	17	H	-1	(1)	1
7	\bigcirc	H	-i	U	\pm
8	保	1	1	v	-1
9	-1	(J)	,	\bigcirc	-
		-	1	\square	-

5.5 Check and clear of the faults history

(1) Check for the faults history

* The cumulative energization time and actual operation time are accumulated from 0 to 65535 hours, then cleared, and accumulated again from 0.

When the operation panel (FR-DU07) is used, the time is displayed up to $65.53(65530 \mathrm{~h})$ in the indication of $1 \mathrm{~h}=0.001$, and thereafter, it is added up from 0 .
(2) Clearing procedure

POINT
The faults history can be cleared by setting "1" in Er.CL Faults history clear.

5.6 Check first when you have a trouble

Refer to troubleshooting on page 81 (speed control) in addition to the following check points.

POINT

If the cause is still unknown after every check, it is recommended to initialize the parameters (initial value) then reset the required parameter values and check again.

- Refer to the Instruction Manual (Applied) for in "Refer to page" column.

5.6.1 Motor does not start

Check points	Possible Cause	Countermeasures	$\begin{gathered} \text { Refer } \\ \text { to } \\ \text { page } \end{gathered}$
Main Circuit	Appropriate power supply voltage is not applied. (Operation panel display is not provided.)	Power ON a moulded case circuit breaker (MCCB), an earth leakage circuit breaker (ELB), or a magnetic contactor (MC).	-
		Check for the decreased input voltage, input phase loss, and wiring.	
		If only the control power is ON when using a separate power source for the control circuit, turn ON the main circuit power.	19
	Motor is not connected properly.	Check the wiring between the inverter and the motor. If commercial power supply-inverter switchover function is active, check the wiring of the magnetic contactor connected between the inverter and the motor.	14
Input signal	Start signal is not input.	Check the start command source, and input a start signal. PU operation mode: FWD / REV External operation mode : STF/STR signal	47
	Both the forward and reverse rotation start signals (STF, STR) are input simultaneously.	Turn ON only one of the forward and reverse rotation start signals (STF or STR). If STF and STR signals are turned ON simultaneously in the initial setting, a stop command is given.	20
	Frequency command is zero. (FWD or REV LED on the operation panel is flickering.)	Check the frequency command source and enter a frequency command.	47
	AU signal is not ON when terminal 4 is used for frequency setting. (FWD or REV LED on the operation panel is flickering.)	Turn ON the AU signal. Turning ON the AU signal activates terminal 4 input.	20
	Output stop signal (MRS) or reset signal (RES) is ON. (FWD or REV LED on the operation panel is flickering.)	Turn MRS or RES signal OFF. Inverter starts the operation with a given start command and a frequency command after turning OFF MRS or RES signal. Before turning OFF, ensure the safety.	20
	CS signal is OFF when automatic restart after instantaneous power failure function is selected (Pr. 57 = "9999"). (FWD or REV LED on the operation panel is flickering.)	Turn ON the CS signal. Restart operation is enabled when restart after instantaneous power signal (CS) is ON.	包枵
	Jumper connector of sink - source is wrongly selected. (FWD or REV LED on the operation panel is flickering.)	Check that the control logic switchover jumper connector is correctly installed. If it is not installed correctly, input signal is not recognized.	23
	Wiring of encoder is incorrect. (Under encoder feedback control or vector control)	Check the wiring of encoder.	31
	Voltage/current input switch is not correctly set for analog input signal (0 to $5 \mathrm{~V} / 0$ to $10 \mathrm{~V}, 4$ to 20 mA). (FWD or REV LED on the operation panel is flickering.)	Set Pr. 73, Pr. 267, and a voltage/current input switch correctly, then input an analog signal in accordance with the setting.	20

Check points	Possible Cause	Countermeasures	Refer to page
Parameter Setting	(STOP was pressed. (Operation panel indication is	During the External operation mode, check the method of restarting from a input stop from PU.	146
	Two-wire or three-wire type connection is wrong.	Check the connection. Connect STOP signal when three-wire type is used.	125
	Pr. 0 Torque boost setting is improper when V/F control is used.	Increase Pr. 0 setting by 0.5% increments while observing the rotation of a motor. If that makes no difference, decrease the setting.	59
	Pr. 78 Reverse rotation prevention selection is set.	Check the Pr. 78 setting. Set $\operatorname{Pr} .78$ when you want to limit the motor rotation to only one direction.	114
	Pr. 79 Operation mode selection setting is wrong.	Select the operation mode which corresponds with input methods of start command and frequency command.	47
	Bias and gain (calibration parameter $C 2$ to $C 7$) settings are improper.	Check the bias and gain (calibration parameter C2 to C7) settings.	119
	Pr. 13 Starting frequency setting is greater than the running frequency.	Set running frequency higher than Pr. 13. The inverter does not start if the frequency setting signal is less than the value set in Pr. 13.	104
	Frequency settings of various running frequency (such as multi-speed operation) are zero. Especially, Pr. 1 Maximum frequency is zero.	Set the frequency command according to the application. Set Pr. 1 higher than the actual frequency used.	60
	Pr. 15 Jog frequency setting is lower than Pr. 13 Starting frequency.	Set Pr. 15 Jog frequency higher than Pr. 13 Starting frequency.	105
	The Pr. 359 Encoder rotation direction setting is incorrect under encoder feedback control or under vector control.	If the "REV" on the operation panel is lit even though the forward-rotation command is given, set Pr. $359=$ "1."	33
	Operation mode and a writing device do not match.	Check Pr. 79, Pr. 338, Pr. 339, Pr. 550, Pr. 551, and select an operation mode suitable for the purpose.	$\begin{aligned} & 62, \\ & 129 \end{aligned}$
	Start signal operation selection is set by the Pr. 250 Stop selection	Check Pr. 250 setting and connection of STF and STR signals.	125
	Inverter decelerated to a stop when power failure deceleration stop function is selected.	When power is restored, ensure the safety, and turn OFF the start signal once, then turn ON again to restart. Inverter restarts when Pr. 261="2, 12".	126
	Auto tuning is being performed.	In the PU operation, press ($\frac{\text { STOP }}{\text { RESEI }}$) on the operation panel after the offline auto tuning completes. In the External operation, turn OFF the start signal (STF, STR). By this operation, offline auto tuning is cancelled, and the monitor display on the PU goes back to normal. (If this operation is not performed, you cannot proceed to the next operation.)	71
	Automatic restart after instantaneous power failure function or power failure stop function is activated. (Performing overload operation during input phase loss may cause voltage insufficiency, and that may result in detection of power failure.)	- Set Pr. 872 Input phase loss protection selection $=$ "1" (input phase failure protection active). - Disable the automatic restart after instantaneous power failure function and power failure stop function. - Reduce the load. - Increase the acceleration time if the automatic restart after instantaneous power failure function or power failure stop function occurred during acceleration.	$\begin{aligned} & 111, \\ & 126 \end{aligned}$
Load	Load is too heavy.	Reduce the load.	-
	Shaft is locked.	Inspect the machine (motor).	-

5.6.2 Motor or machine is making abnormal acoustic noise

Check points	Possible Cause	Countermeasures	Refer to page
Input signal	Disturbance due to EMI when frequency command is given from analog input (terminal 1, 2, 4).	Take countermeasures against EMI.	回
Parameter Setting		Increase the Pr. 74 Input filter time constant if steady operation cannot be performed due to EMI.	114
Parameter Setting	No carrier frequency noises (metallic noises) are generated.	In the initial setting, Pr. 240 Soft-PWM operation selection is enabled to change motor noise to an unoffending complex tone. Therefore, no carrier frequency noises (metallic noises) are generated. Set Pr. $240=$ " 0 " to disable this function.	113
	Resonance occurs. (output frequency)	Set Pr. 31 to Pr. 36 (Frequency jump). When it is desired to avoid resonance attributable to the natural frequency of a mechanical system, these parameters allow resonant frequencies to be jumped.	108
	Resonance occurs. (carrier frequency)	Change Pr. 72 PWM frequency selection setting. Changing the PWM carrier frequency produces an effect on avoiding the resonance frequency of a mechanical system or a motor.	113
		Set a notch filter.	[國
	Auto tuning is not performed under Advanced magnetic flux vector control, Real sensorless vector control, or vector control.	Perform offline auto tuning.	71
	Gain adjustment during PID control is insufficient.	To stabilize the measured value, change the proportional band (Pr. 129) to a larger value, the integral time (Pr.130) to a slightly longer time, and the differential time (Pr. 134) to a slightly shorter time. Check the calibration of set point and measured value.	120
	The gain is too high under Real sensorless vector control or vector control.	During speed control, check the setting of Pr. 820 (Pr. 830) speed control P gain.	135
		During torque control, check the setting of Pr. 824 (Pr. 834) torque control P gain.	136
Others	Mechanical looseness	Adjust machine/equipment so that there is no mechanical looseness.	-
	Contact the motor manufacturer.		
Motor	Operating with output phase loss	Check the motor wiring.	-

5.6.3 Inverter generates abnormal noise

Larger acoustic noise is generated during regenerative driving than during power driving because the inverter contains an AC reactor. This is not a fault.
Connecting a single-phase power supply device or having an unbalanced power supply may cause the reactor to generate acoustic noise even in non-operating status. This is not a fault.

Check points	Refer to page		
Fan	Fan cover was not correctly installed when a cooling fan was replaced.	Install a fan cover correctly.	175

5.6.4 Motor generates heat abnormally

Check points	Possible Cause	Countermeasures	
Motor	Refer to page		
	(Dust is accumulated.)	Clean the motor fan. Improve the environment.	
Main Circuit	The inverter output voltage (U, V, W) are unbalanced.	Check the output voltage of the inverter. Check the insulation of the motor.	-
Parameter Setting	The Pr. 71 Applied motor setting is wrong.	Check the Pr. 71 Applied motor setting.	171
-	Motor current is large.	Refer to "5.6.8 Motor current is too large"	113

5.6.5 Motor rotates in the opposite direction

Check points	Possible Cause	Countermeasures	Refer to page
Main Circuit	Phase sequence of output terminals U, V and W is incorrect.	Connect phase sequence of the output cables (terminal U, V, W) to the motor correctly.	13
Input signal	The start signals (forward rotation, reverse rotation) are connected improperly.	Check the wiring. (STF: forward rotation, STR: reverse rotation)	20
	The polarity of the frequency command is negative during the polarity reversible operation set by Pr. 73 Analog input selection.	Check the polarity of the frequency command.	\%
Input signal Parameter setting	Torque command is negative during torque control under vector control.	Check the torque command value.	园

5.6.6 Speed greatly differs from the setting

Check points	Possible Cause	Countermeasures	Refer to page
Input signal	Frequency setting signal is incorrectly input.	Measure the input signal level.	-
	The input signal lines are affected by external EMI.	Take countermeasures against EMI such as using shielded wires for input signal lines.	氾
Parameter Setting	Pr. 1, Pr. 2, Pr. 18, calibration parameter $C 2$ to $C 7$ settings are improper.	Check the settings of Pr. 1 Maximum frequency, Pr. 2 Minimum frequency, Pr. 18 High speed maximum frequency.	103
		Check the calibration parameter $C 2$ to $C 7$ settings.	119
	Pr. 31 to Pr. 36 (frequency jump) settings are improper.	Narrow down the range of frequency jump.	108
Load	Stall prevention (torque limit) function is activated due to a heavy load.	Reduce the load weight.	-
Parameter Setting		Set Pr. 22 Stall prevention operation level (Torque limit level) higher according to the load. (Setting Pr. 22 too large may result in frequent overcurrent trip (E.OC \square).)	$\begin{gathered} 106 \\ (107) \end{gathered}$
Motor		Check the capacities of the inverter and the motor.	-

5.6.7 Acceleration/deceleration is not smooth

Check points	Possible Cause	Countermeasures	Refer to page
Parameter Setting	Acceleration/deceleration time is too short.	Increase acceleration/deceleration time.	61
	Torque boost (Pr. 0, Pr. 46, Pr. 112) setting is improper under V/F control, so the stall prevention function is activated.	Increase/decrease Pr. 0 Torque boost setting value by 0.5% increments to the setting.	59
	The base frequency setting and the motor characteristic does not match.	For V/F control, set Pr. 3 Base frequency, Pr. 47 Second V/F (base frequency), and Pr. 113 Third V/F (base frequency).	103
		For vector control, set Pr. 84 Rated motor frequency.	71
	Regeneration avoidance operation is performed	If the frequency becomes unstable during regeneration avoidance operation, decrease the setting of Pr. 886 Regeneration avoidance voltage gain.	138
Load	Stall prevention (torque limit) function is activated due to a heavy load.	Reduce the load weight.	-
Parameter Setting		Set Pr. 22 Stall prevention operation level (Torque limit level) higher according to the load. (Setting Pr. 22 too large may result in frequent overcurrent trip (E.OCD).)	$\begin{gathered} 106 \\ (107) \end{gathered}$
Motor		Check the capacities of the inverter and the motor.	-

5.6.8 Motor current is too large

Check points	Possible Cause	Countermeasures	Refer to page
Parameter Setting	Torque boost (Pr. 0, Pr. 46, Pr. 112) setting is improper under V/F control, so the stall prevention function is activated.	Increase/decrease Pr. 0 Torque boost setting value by 0.5% increments to the setting.	59
	V/F pattern is improper when V/F control is performed. (Pr. 3, Pr. 14, Pr. 19)	Set rated frequency of the motor to Pr. 3 Base frequency. Use Pr. 19 Base frequency voltage to set the base voltage (e.g. rated motor voltage).	103
		Change Pr. 14 Load pattern selection according to the load characteristic.	105
	Stall prevention (torque limit) function is activated due to a heavy load.	Reduce the load weight.	-
		Set Pr. 22 Stall prevention operation level (Torque limit level) higher according to the load. (Setting Pr. 22 too large may result in frequent overcurrent trip (E.OCD).)	$\begin{gathered} 106 \\ (107) \end{gathered}$
		Check the capacities of the inverter and the motor.	-
	Auto tuning is not performed under Advanced magnetic flux vector control, Real sensorless vector control, or vector control.	Perform offline auto tuning.	71

5．6．9 Speed does not accelerate

Check points	Possible Cause	Countermeasures	Refer to page
Input signal	Start command and frequency command are chattering．	Check if the start command and the frequency command are correct．	－
	The wiring length used for analog frequency command is too long，and it is causing a voltage （current）drop．	Perform analog input bias／gain calibration．	
	Input signal lines are affected by external EMI．	Take countermeasures against EMI，such as using shielded wires for input signal lines．	回酔
Parameter Setting	Pr．1，Pr．2，Pr．18，calibration parameter C2 to $C 7$ settings are improper．	Check the settings of Pr． 1 Maximum frequency and Pr． 2 Minimum frequency．If you want to run the motor at 120 Hz or higher，set Pr． 18 High speed maximum frequency．	103
		Check the calibration parameter C2 to C7 settings．	119
	Torque boost（Pr．0，Pr．46，Pr．112）setting is improper under V／F control，so the stall prevention function is activated．	Increase／decrease Pr． 0 Torque boost setting value by 0.5% increments so that stall prevention does not occur．	59
	V／F pattern is improper when V／F control is performed．(Pr. 3, Pr. 14, Pr. 19)	Set rated frequency of the motor to Pr． 3 Base frequency． Use Pr． 19 Base frequency voltage to set the base voltage（e．g．rated motor voltage）．	103
		Change Pr． 14 Load pattern selection according to the load characteristic．	105
	Auto tuning is not performed under Advanced magnetic flux vector control，Real sensorless vector control，or vector control．	Perform offline auto tuning．	71
	The setting of pulse train input is improper．	Check the specification of the pulse generator（open collector output or complementary output）and check the adjustment of the pulse train and frequency（Pr． 385 and Pr．386）．	
	During PID control，output frequency is automatically controlled to make measured value $=$ set point．		回包
Load	Stall prevention（torque limit）function is activated due to a heavy load．	Reduce the load weight．	－
Parameter Setting		Set Pr． 22 Stall prevention operation level（Torque limit level）higher according to the load．（Setting Pr． 22 too large may result in frequent overcurrent trip (E.OCD).)	$\begin{gathered} 106 \\ (107) \end{gathered}$
Motor		Check the capacities of the inverter and the motor．	－

5．6．10 Motor and machine vibrate

Check points	Refer to page		
Parameter Setting	Pr．19 Base frequency voltage is improper under V／F control．	Countermeasures Set the rated motor voltage to Pr． 19 Base frequency voltage．	103
	Mechanical looseness	Adjust machine／equipment so that there is no mechanical looseness．	-

5.6.11 Speed varies during operation

When Advanced magnetic flux vector control, Real sensorless vector control, vector control or encoder feedback control is exercised, the output frequency varies with load fluctuation between 0 and 2 Hz . This is a normal operation and is not a fault.

Check points	Possible Cause	Countermeasures	Refer to page
Load	Load varies during an operation.	Select Advanced magnetic flux vector control, Real sensorless vector control, vector control, or encoder feedback control.	$63,66$
Input signal	Frequency setting signal is varying.	Check the frequency setting signal.	-
	The frequency setting signal is affected by EMI.	Set filter to the analog input terminal using Pr. 74 Input filter time constant, Pr. 822 Speed setting filter 1 .	114
		Take countermeasures against EMI, such as using shielded wires for input signal lines.	回
	Malfunction is occurring due to the undesirable current generated when the transistor output unit is connected.	Use terminal PC (terminal SD when source logic) as a common terminal to prevent a malfunction caused by undesirable current.	24
	Multi-speed command signal is chattering.	Take countermeasures to suppress chattering.	-
	Feedback signal from the encoder is affected by EMI.	Place the encoder cable far from the EMI source such as main circuit and power supply voltage. Earth (ground) the shield of the encoder cable to the enclosure using a metal P-clip or U-clip.	31
Parameter Setting	Pr. 80 Motor capacity and Pr. 81 Number of motor poles are not appropriate for the motor capacity under Advanced magnetic flux vector control, Real sensorless vector control, or vector control.	Check the settings of Pr. 80 Motor capacity and Pr. 81 Number of motor poles.	63,66
	Fluctuation of power supply voltage is too large.	Change the Pr. 19 Base frequency voltage setting (about 3\%) under V/F control.	103
	Wiring length exceeds 30 m when Advanced magnetic flux vector control, Real sensorless vector control, or vector control is selected.	Perform offline auto tuning.	71
	Wiring length is too long for V/F control, and the a voltage drop occurs.	Adjust the Pr. 0 Torque boost setting by increasing with 0.5% increments for the low-speed operation.	59
		Change the control method to Advanced magnetic flux vector control or Real sensorless vector control.	63
	Hunting occurs by the generated vibration, for example, when structural rigidity at load side is insufficient.	Disable automatic control functions, such as the energy saving operation, the fast-response current limit function, the torque limit, the regeneration avoidance function, Advanced magnetic flux vector control, Real sensorless vector control, vector control, encoder feedback control, droop control, the stall prevention, online auto tuning, the notch filter, and orientation control. During the PID control, set smaller values to Pr. 129 PID proportional band and Pr. 130 PID integral time. Lower the control gain, and adjust to increase the stability.	-
		Change Pr. 72 PWM frequency selection setting.	113

5.6.12 Operation mode is not changed properly

Check points	Possible Cause	Countermeasures	Refer to page
Input signal	Start signal (STF or STR) is ON.	Check that the STF and STR signals are OFF. When either is ON, the operation mode cannot be changed.	62
Parameter Setting	Pr. 79 setting is improper.	When Pr. 79 Operation mode selection setting is "0" (initial value), the inverter is placed in the External operation mode at input power ON. To switch to the PU operation mode, press $\frac{P U}{E X T}$ on the operation panel (press \square PU when the parameter unit (FR-PU04/FR-PU07) is used). At other settings (1 to 4, 6, 7), the operation mode is limited accordingly.	62
	Operation mode and a writing device do not correspond.	Check Pr. 79, Pr. 338, Pr. 339, Pr. 550, Pr. 551, and select an operation mode suitable for the purpose.	62,129

5.6.13 Operation panel (FR-DU07) display is not operating

Check points	Possible Cause	Countermeasures	Refer to page
Main Circuit, Control Circuit	Power is not input.	Input the power.	12
Front cover	Operation panel is not properly connected to the inverter.	Check if the inverter front cover is installed securely. The inverter cover may not fit properly when using wires whose size are $1.25 \mathrm{~mm}^{2}$ or larger, or when using many wires, and this could cause a contact fault of the operation panel.	4

5.6.14 Power lamp is not lit

Check points	Possible Cause	Countermeasures to page	
Main Circuit, Control Circuit	Wiring or installation is improper.	Check for the wiring and the installation. Power lamp is lit when power is input to the control circuit (R1/L11, S1/L21).	13

5.6.15 Unable to write parameter setting

Check points	Possible Cause	Countermeasures	Refer to page
Input signal	Operation is being performed (signal STF or STR is ON).	Stop the operation. When Pr. 77 = "0" (initial value), write is enabled only during a stop.	114
Parameter Setting	You are attempting to set the parameter in the External operation mode.	Choose the PU operation mode. Or, set $\operatorname{Pr} .77=$ "2" to enable parameter write regardless of the operation mode.	114
	Parameter is disabled by the Pr. 77 Parameter write selection setting.	Check Pr. 77 Parameter write selection setting.	114
	Key lock is activated by the Pr. 161 Frequency setting/ key lock operation selection setting.	Check Pr. 161 Frequency setting/key lock operation selection setting.	122
	Operation mode and a writing device do not correspond.	Check Pr. 79, Pr. 338, Pr. 339, Pr. 550, Pr. 551, and select an operation mode suitable for the purpose.	62,129

6 PRECAUTIONS FOR MAINTENANCE AND INSPECTION

The inverter is a static unit mainly consisting of semiconductor devices. Daily inspection must be performed to prevent any fault from occurring due to the adverse effects of the operating environment, such as temperature, humidity, dust, dirt and vibration, changes in the parts with time, service life, and other factors.

- Precautions for maintenance and inspection

For some short time after the power is switched off, a high voltage remains in the smoothing capacitor. When accessing the inverter for inspection, wait for at least 10 minutes after the power supply has been switched off, and then make sure that the voltage across the main circuit terminals $\mathrm{P} /+-\mathrm{N} /-$ of the inverter is not more than 30VDC using a tester, etc.

6.1 Inspection item

6.1.1 Daily inspection

Basically, check for the following faults during operation.
(1) Motor operation fault
(2) Improper installation environment
(3) Cooling system fault
(4) Unusual vibration and noise
(5) Unusual overheat and discoloration

6.1.2 Periodic inspection

Check the areas inaccessible during operation and requiring periodic inspection.
Consult us for periodic inspection.

1) Check for cooling system fault

Clean the air filter, etc.
2) Tightening check and retightening

The screws and bolts may become loose due to vibration, temperature changes, etc.
Tighten them according to the specified tightening torque. (Refer to page 16)
3) Check the conductors and insulating materials for corrosion and damage.
4) Measure insulation resistance.
5) Check and change the cooling fan and relay.

6.1.3 Daily and periodic inspection

	Inspection Item		Description	Interval		Corrective Action at Alarm Occurrence		
			-	응 응				
General		ounding ronment		Check the surrounding air temperature, humidity, dirt, corrosive gas, oil mist , etc.	\bigcirc		Improve environment	
	Overall unit		Check for unusual vibration and noise.	0		Check alarm location and retighten		
	Power supply voltage		Check that the main circuit voltages and control voltages are normal.*1	0		Inspect the power supply		
Main circuit	General		(1)Check with megger (across main circuit terminals and earth (ground) terminal). (2) Check for loose screws and bolts. (3) Check for overheat traces on the parts. (4) Check for stain.		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	Contact the manufacturer Retighten Contact the manufacturer Clean		
	Conductors, cables		(1)Check conductors for distortion. (2) Check cable sheaths for breakage and deterioration (crack, discoloration, etc.).		$\begin{aligned} & 0 \\ & 0 \end{aligned}$	Contact the manufacturer Contact the manufacturer		
	Transformer/reactor		Check for unusual odor and abnormal increase in whining sound.	0		Stop the device and contact the manufacturer.		
	Terminal block		Check for damage.		0	Stop the device and contact the manufacturer.		
	Smoothing aluminum electrolytic capacitor		(1)Check for liquid leakage. (2) Check for safety valve projection and bulge. (3) Visual check and judge by the life check of the main circuit capacitor. (Refer to page 172)		$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	Contact the manufacturer Contact the manufacturer		
	Relay/contactor		Check that the operation is normal and no chatter is heard.		\bigcirc	Contact the manufacturer		
	Resistor		(1) Check for crack in resistor insulation. (2) Check for a break in the cable.		$\begin{aligned} & 0 \\ & 0 \end{aligned}$	Contact the manufacturer Contact the manufacturer		
Control circuit protective circuit	Operation check		(1)Check that the output voltages across phases with the inverter operated alone is balanced. (2)Check that no fault is found in protective and display circuits in a sequence protective operation test.		○ O	Contact the manufacturer Contact the manufacturer		
		Overall	(1) Check for unusual odor and discoloration. (2) Check for serious rust development.		$\begin{aligned} & 0 \\ & 0 \end{aligned}$	Stop the device and contact the manufacturer. Contact the manufacturer		
		Aluminum electrolytic capacitor	(1)Check for liquid leakage in a capacitor and deformation trace. (2) Visual check and judge by the life check of the control circuit capacitor. (Refer to page 172.)		0 0	Contact the manufacturer		
Cooling system	Cooling fan		(1)Check for unusual vibration and noise. (2)Check for loose screws and bolts. (3)Check for stain.	0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	Replace the fan Fix with the fan cover fixing screws Clean		
	Heatsink		(1)Check for clogging. (2)Check for stain.		$\begin{aligned} & 0 \\ & 0 \end{aligned}$	Clean Clean		
	Air filter, etc.		(1)Check for clogging. (2)Check for stain.		$\begin{aligned} & 0 \\ & 0 \end{aligned}$	Clean or replace Clean or replace		
Display	Indication		(1)Check that display is normal. (2)Check for stain.	0	0	Contact the manufacturer Clean		
	Meter		Check that reading is normal.	0		Stop the device and contact the manufacturer.		
Load motor	Operation check		Check for vibration and abnormal increase in operation noise.	0		Stop the device and contact the manufacturer.		

[^9]
6.1.4 Display of the life of the inverter parts

The self-diagnostic alarm is output when the lifespan of the control circuit capacitor, cooling fan, each parts of the inrush current limit circuit is near its end. It gives an indication of replacement time .

The life alarm output can be used as a guideline for life judgement.

Parts	Judgement Level
Main circuit capacitor	85\% of the initial capacity
Control circuit capacitor	Estimated 10% life remaining
Inrush current limit circuit	Estimated 10% life remaining (Power on: 100,000 times left)
Cooling fan	Less than 50% of the predetermined speed

For the life check of the main circuit capacitor, the alarm signal (Y90) will not be output if a measuring method of (2) is not performed. (Refer to page 173.)

(1) Display of the life alarm

Pr. 255 Life alarm status display can be used to confirm that the control circuit capacitor, main circuit capacitor, cooling fan, and each parts of the inrush current limit circuit has reached the life alarm output level.

POINT

Life check of the main circuit capacitor needs to be done by Pr. 259. (Refer to the following.)

(2) Measuring method of life of the main circuit capacitor

If the value of capacitor capacity measured before shipment is considered as 100%, Pr. 255 bit1 is turned ON when the measured value falls below 85%.

- Measure the capacitor capacity according to the following procedure and check the deterioration level of the capacitor capacity.

1) Check that the motor is connected and at a stop.
2) Set "1" (measuring start) in Pr. 259
3) Switch power off. The inverter applies DC voltage to the motor to measure the capacitor capacity while the inverter is off.
4) After confirming that the LED of the operation panel is off, power on again.
5) Check that " 3 " (measuring completion) is set in Pr. 259, then read Pr. 258 and check the life of the main circuit capacitor.

REMARKS

- When the main circuit capacitor life is measured under the following conditions, "forced end" (Pr. $259=$ " 8 ") or "measuring error" (Pr. $259=$ "9") occurs or it remains in "measuring start" (Pr. $259=" 1 "$). When measuring, avoid the following conditions to perform. In addition, even when "measurement completion" (Pr. $259=" 3 "$) is confirmed under the following conditions, normal measurement can not be done.
(a)Terminal R1/L11, S1/L21 is connected to the terminals $\mathrm{P} /+$ and $\mathrm{N} /-$.
(b)Switch power on during measuring.
(c)The motor is not connected to the inverter.
(d)The motor is running.(The motor is coasting.)
(e)The motor capacity is two rank smaller as compared to the inverter capacity.
(f)The inverter is at an alarm stop or an alarm occurred while power is off.
(g)The inverter output is shut off with the MRS signal.
(h)The start command is given while measuring.

Operating environment: Surrounding air temperature (annual average $40^{\circ} \mathrm{C}$ (free from corrosive gas, flammable gas, oil mist, dust and dirt))
Output current (80% of the inverter rated current)

POINT

For accurate life measurement of the main circuit capacitor, wait 3 hours or longer after turning OFF. The temperature left in the main circuit capacitor affects measurement.

. WARNING

When measuring the main circuit capacitor capacity (Pr. 259 Main circuit capacitor life measuring $=" 1 "$), the DC voltage is applied to the motor for 1 s at powering off. Never touch the motor terminal, etc. right after powering off to prevent an electric shock.

6.1.5 Checking the inverter and converter modules <Preparation>

(1) Disconnect the external power supply cables (R/L1, S/L2, T/L3) and motor cables (U, V, W).
(2) Prepare a tester. (Use 100Ω range.)

<Checking method>

Change the polarity of the tester alternately at the inverter terminals $\mathrm{R} / \mathrm{L} 1, \mathrm{~S} / \mathrm{L} 2, \mathrm{~T} / \mathrm{L} 3, \mathrm{U}, \mathrm{V}, \mathrm{W}, \mathrm{P} /+$ and $\mathrm{N} /-$, and check for electric continuity.
<Module device numbers and terminals to be checked>

		Tester Polarity		Measured Value		Tester Polarity		Measured Value
		\oplus	Θ			\oplus	\bigcirc	
	TR11	R/L1	P/+	Discontinuity	TR14	R/L1	N/-	Continuity
		P/+	R/L1	Continuity		N/-	R/L1	Discontinuity
	TR13	S/L2	P/+	Discontinuity	TR16	S/L2	N/-	Continuity
		P/+	S/L2	Continuity		N/-	S/L2	Discontinuity
	TR15	T/L3	P/+	Discontinuity	TR12	T/L3	N/-	Continuity
		P/+	T/L3	Continuity		N/-	T/L3	Discontinuity
	TR1	U	P/+	Discontinuity	TR4	U	N/-	Continuity
		P/+	U	Continuity		N/-	U	Discontinuity
	TR3	V	P/+	Discontinuity	TR6	V	N/-	Continuity
		P/+	V	Continuity		N/-	V	Discontinuity
	TR5	W	P/+	Discontinuity	TR2	W	N/-	Continuity
		P/+	W	Continuity		N/-	W	Discontinuity

(Assumes the use of an analog meter.)

6.1.6 Cleaning

Always run the inverter in a clean status.
When cleaning the inverter, gently wipe dirty areas with a soft cloth immersed in neutral detergent or ethanol.

= CAUTION

Do not use solvent, such as acetone, benzene, toluene and alcohol, as they will cause the inverter surface paint to peel off.
The display, etc. of the operation panel (FR-DU07) and parameter unit (FR-PU04/FR-PU07) are vulnerable to detergent and alcohol. Therefore, avoid using them for cleaning.

6.1.7 Replacement of parts

The inverter consists of many electronic parts such as semiconductor devices.
The following parts may deteriorate with age because of their structures or physical characteristics, leading to reduced performance or fault of the inverter. For preventive maintenance, the parts must be replaced periodically.
Use the life check function as a guidance of parts replacement.

Part Name	Estimated lifespan *1	Description
Cooling fan	10 years	Replace (as required)
Main circuit smoothing capacitor	10 years ${ }^{2}$	Replace (as required)
On-board smoothing capacitor	10 years	Replace the board (as required)
Relays	-	as required

*1 Estimated lifespan for when the yearly average surrounding air temperature is $40^{\circ} \mathrm{C}$
(without corrosive gas, flammable gas, oil mist, dust and dirt etc)
*2 Output current: 80\% of the inverter rated current

REMARKS

- Since repeated inrush currents at power ON will shorten the life of the converter circuit, frequent starts and stops of the magnetic contactor must be avoided.

CAUTION

For parts replacement, consult the nearest Mitsubishi FA Center.

(1) Cooling fan

The replacement interval of the cooling fan used for cooling the parts generating heat such as the main circuit semiconductor is greatly affected by the surrounding air temperature. When unusual noise and/or vibration is noticed during inspection, the cooling fan must be replaced immediately.

- Removal

1) Remove a fan cover.
2) After removing a fan connector, remove a fan block.
3) Remove the fan.

- Reinstallation

1) After confirming the orientation of the fan, reinstall the fan so that the arrow on the left of "AIR FLOW" faces up.

<Fan side face>
2) Install fans referring to the above figure.

— CAUTION

- Installing the fan in the opposite of air flow direction can cause the inverter life to be shorter.
- Prevent the cable from being caught when installing a fan.
- Switch the power off before replacing fans. Since the inverter circuits are charged with voltage even after power off, replace fans only when the inverter cover is on the inverter to prevent an electric shock accident.

Inspection item

(2) Smoothing capacitors

A large-capacity aluminum electrolytic capacitor is used for smoothing in the main circuit DC section, and an aluminum electrolytic capacitor is used for stabilizing the control power in the control circuit. Their characteristics are deteriorated by the adverse effects of ripple currents, etc.
The replacement intervals greatly vary with the surrounding air temperature and operating conditions. When the inverter is operated in air-conditioned, normal environment conditions, replace the capacitors about every 10 years.
The appearance criteria for inspection are as follows:

1) Case: Check the side and bottom faces for expansion
2) Sealing plate: Check for remarkable warp and extreme crack.
3) Check for external crack, discoloration, fluid leakage, etc. Judge that the capacitor has reached its life when the measured capacitance of the capacitor reduced below 80% of the rating.

Refer to page 174 to perform the life check of the main circuit capacitor.

(3) Relays

To prevent a contact fault, etc., relays must be replaced according to the cumulative number of switching times (switching life).

6.2 Measurement of main circuit voltages, currents and powers

Since the voltages and currents on the inverter power supply and output sides include harmonics, measurement data depends on the instruments used and circuits measured.
When instruments for commercial frequency are used for measurement, measure the following circuits with the instruments given on the next page.

- When installing meters etc. on the inverter output side

When the inverter-to-motor wiring length is large, especially in the 400 V class, small-capacity models, the meters and CTs may generate heat due to line-to-line leakage current. Therefore, choose the equipment which has enough allowance for the current rating.
When measuring and indicating the output voltage and output current of the inverter, it is recommended to utilize the terminals AM and FM output function of the inverter.

Examples of Measuring Points and Instruments

Measuring points and instruments

[^10]
6.2.1 Measurement of powers

Use digital power meters (for inverter) for the both of inverter input and output side. Alternatively, measure using electrodynamic type single-phase wattmeters for the both of inverter input and output side in two-wattmeter or three- wattmeter method. As the current is liable to be imbalanced especially in the input side, it is recommended to use the three-wattmeter method.
Examples of measured value differences produced by different measuring meters are shown below.
An error will be produced by difference between measuring instruments, e.g. power calculation type and two- or three-wattmeter type three-phase wattmeter. When a CT is used in the current measuring side or when the meter contains a PT on the voltage measurement side, an error will also be produced due to the frequency characteristics of the CT and PT.

[Measurement conditions]

Constant-torque (100\%) load, constant-power at 60 Hz or more.
3.7 kW , 4-pole motor, value indicated in 3-wattmeter method is 100%.

Example of measuring inverter input power

[Measurement conditions]

Constant-torque (100\%) load, constant-power at 60 Hz or more.
3.7 kW , 4-pole motor, value indicated in 3-wattmeter method is 100%.

6.2.2 Measurement of voltages and use of PT

(1) Inverter input side

As the input side voltage has a sine wave and it is extremely small in distortion, accurate measurement can be made with an ordinary AC meter.

(2) Inverter output side

Since the output side voltage has a PWM-controlled rectangular wave, always use a rectifier type voltmeter. A needle type tester can not be used to measure the output side voltage as it indicates a value much greater than the actual value. A moving-iron type meter indicates an effective value which includes harmonics and therefore the value is larger than that of the fundamental wave. The value monitored on the operation panel is the inverter controlled voltage itself. Hence, that value is accurate and it is recommended to monitor values (provide analog output) using the operation panel.

(3) PT

No PT can be used in the output side of the inverter. Use a direct-reading meter. (A PT can be used in the input side of the inverter.)

Measurement of main circuit voltages,

 currents and powers
6.2.3 Measurement of currents

Use a moving-iron type meter on both the input and output sides of the inverter. However, if the carrier frequency exceeds 5 kHz , do not use that meter since an overcurrent losses produced in the internal metal parts of the meter will increase and the meter may burn out. In this case, use an approximate-effective value type.
As the inverter input side current is easily imbalanced, measurement of currents in all three phases is recommended. Correct values can not be measured in one or two phases. On the other hand, the phase imbalanced ratio of the output side current must be within 10%.
When using a clamp ammeter, always use an effective value detection type. A mean value detection type produces a large error and may indicate an extremely smaller value than the actual value. The value monitored on the operation panel is accurate if the output frequency varies, and it is recommended to monitor values (provide analog output) using the operation panel.
An example of the measured value difference produced by different measuring meters is shown below.

[Measurement conditions]

Value indicated by moving-iron type ammeter is 100%.

Example of measuring inverter input current

[Measurement conditions]

Value indicated by moving-iron type ammeter is 100%.

Example of measuring inverter output current

6.2.4 Use of CT and transducer

A CT may be used in both the input and output sides of the inverter, but the one used should have the largest possible VA ability because an error will increase if the frequency gets lower.
When using a transducer, use the effective value calculation type which is immune to harmonics.

6.2.5 Measurement of inverter input power factor

Use the effective power and apparent power to calculate the inverter input power factor. A power-factor meter can not indicate an exact value.

Total power factor of the inverter	$=\frac{\text { Effective power }}{\text { Apparent power }}$
	$=\frac{\text { Three-phase input power found by 3-wattmeter method }}{\sqrt{3} \times \mathrm{V} \text { (power supply voltage) } \times I \text { (input current effective value) }}$

6.2.6 Measurement of converter output voltage (across terminals $P /+$ and $N /-$)

The output voltage of the converter is developed across terminals $\mathrm{P} /+-\mathrm{N} /-$ and can be measured with a moving-coil type meter (tester). Although the voltage varies according to the power supply voltage, approximately 270 V to 300 V (approximately 540 V to 600 V for the 400 V class) is output when no load is connected and voltage decreases when a load is connected.
When energy is regenerated from the motor during deceleration, for example, the converter output voltage rises to nearly 400 VDC to 450 VDC (800VDC to 900VDC for the 400 V class) maximum.

6.2.7 Measurement of inverter output frequency

A pulse train proportional to the output frequency is output across the frequency meter signal output terminal FMSD of the inverter. This pulse train output can be counted by a frequency counter, or a meter (moving-coil type voltmeter) can be used to read the mean value of the pulse train output voltage. When a meter is used to measure the output frequency, approximately 5VDC is indicated at the maximum frequency.
For detailed specifications of the frequency meter signal output terminal FM, refer to page 22.

6.2.8 Insulation resistance test using megger

For the inverter, conduct the insulation resistance test on the main circuit only as shown below and do not perform the test on the control circuit. (Use a 500VDC megger.)

CAUTION

- Before performing the insulation resistance test on the external circuit, disconnect the cables from all terminals of the inverter so that the test voltage is not applied to the inverter.
- For the electric continuity test of the control circuit, use a tester (high resistance range) and do not use the megger or buzzer.

6.2.9 Pressure test

Do not conduct a pressure test. Deterioration may occur.

7 SPECIFICATIONS

7．1 Rating

7．1．1 Inverter rating

－200V class

Model FR－A721－$\square \square \mathrm{K}$	5.5	7.5	11	15	18.5	22	30	37	45	55
Applicable motor capacity（kW）＊1	5.5	7.5	11	15	18.5	22	30	37	45	55
Rated capacity（kVA）＊2	9.2	12.6	17.6	23.3	29	34	44	55	67	82
Rated current（A）	24	33	46	61	76	90	115	145	175	215
产 ${ }_{3}^{3}$ Overload current rating＊3	$150 \% 60 \mathrm{~s}, 200 \%$ 3s（inverse－time characteristics） surrounding air temperature $50^{\circ} \mathrm{C}$									
Rated voltage＊4	Three－phase 200 to 240V									
Regenerative braking torque	100\％continuous 150\％60s									
Rated input AC voltage／frequency	Three－phase 200 to $220 \mathrm{~V} 50 \mathrm{~Hz}, 200$ to 240 V 60 Hz									
$\stackrel{\text { ¢ }}{ }$	170 to $242 \mathrm{~V} 50 \mathrm{~Hz}, 170$ to 264 V 60 Hz									
${ }_{0}^{0}$ Permissible frequency fluctuation	$\pm 5 \%$									
¢ ${ }^{\text {a }}$ Power supply capacity（kVA）＊5	12	17	20	28	34	41	52	66	80	100
Protective structure（JEM 1030）＊6	Open type（IP00）									
Cooling system	Forced air cooling									
Approx．mass（kg）	20	22	33	35	50	52	69	87	90	120

＊1 The applicable motor capacity indicated is the maximum capacity applicable for use of the Mitsubishi 4－pole standard motor．
＊2 The rated output capacity indicated assumes that the output voltage is 220 V ．
＊3 The \％value of the overload current rating indicated is the ratio of the overload current to the inverter＇s rated output current．For repeated duty， allow time for the inverter and motor to return to or below the temperatures under 100% load．
＊4 The maximum output voltage does not exceed the power supply voltage．The maximum output voltage can be changed within the setting range．
However，the pulse voltage value of the inverter output side voltage remains unchanged at about $\sqrt{2}$ that of the power supply．
＊5 The power supply capacity varies with the value of the power supply side inverter impedance（including those of the input reactor and cables）．
＊6 FR－DU07：IP40（except for the PU connector）

－400V class

Model FR－A741－■口K	5.5	7.5	11	15	18.5	22	30	37	45	55
Applicable motor capacity（kW）＊1	5.5	7.5	11	15	18.5	22	30	37	45	55
Rated capacity（kVA）＊2	9.1	13	17.5	23.6	29	32.8	43.4	54	65	84
Rated current（A）	12	17	23	31	38	44	57	71	86	110
旁䓂 Overload current rating＊3	150% 60s，200\％3s（inverse－time characteristics） surrounding air temperature $50^{\circ} \mathrm{C}$									
Rated voltage＊4	Three－phase 380 to 480V									
Regenerative braking torque	100\％continuous 150\％60s									
글 Rated input AC voltage／frequency	Three－phase 380 to $480 \mathrm{~V} 50 \mathrm{~Hz} / 60 \mathrm{~Hz}$									
$\stackrel{\text { Permissible AC voltage fluctuation }}{ }$	323 to $528 \mathrm{~V} 50 \mathrm{~Hz} / 60 \mathrm{~Hz}$									
\bigcirc	$\pm 5 \%$									
$\bigcirc \times$	12	17	20	28	34	41	52	66	80	100
Protective structure＊6	Open type（IP00）									
Cooling system	Forced air cooling									
Approx．mass（kg）	25	26	37	40	48	49	65	80	83	115

＊1 The applicable motor capacity indicated is the maximum capacity applicable for use of the Mitsubishi 4－pole standard motor．
＊2 The rated output capacity indicated assumes that the output voltage is 440 V ．
＊3 The \％value of the overload current rating indicated is the ratio of the overload current to the inverter＇s rated output current．For repeated duty， allow time for the inverter and motor to return to or below the temperatures under 100% load．
＊4 The maximum output voltage does not exceed the power supply voltage．The maximum output voltage can be changed within the setting range．
However，the pulse voltage value of the inverter output side voltage remains unchanged at about $\sqrt{2}$ that of the power supply．
＊5 The power supply capacity varies with the value of the power supply side inverter impedance（including those of the input reactor and cables）．
＊6 FR－DU07：IP40（except for the PU connector）

7.1.2 Motor rating

(1) SF-V5RU

-200V class (Mitsubishi dedicated motor [SF-V5RU (1500r/min series)])

Motor model SF-V5RUD	3	5	7	11	15	18	22	30	37	45
Applicable inverter model FR-A721-पロK	5.5	7.5	11	15	18.5	22	30	37	45	55
Rated output (kW)	3.7	5.5	7.5	11	15	18.5	22	30 *	37 *1	45 *1
Rated torque ($\mathrm{N}^{\prime} \mathrm{m}$)	23.6	35.0	47.7	70.0	95.5	118	140	191	235	286
Maximum torque 150\% 60s (N'm)	35.4	52.4	71.6	105	143	176	211	287	353	429
Rated speed (r/min)										
Maximum speed (r/min)										
Frame No.	112M	132S	132M	160M	160L	180M	180M	200L	200L	200L
Inertia moment J $\left(\times 10^{-4} \mathrm{~kg}^{\prime} \mathrm{m}^{2}\right.$)	175	275	400	750	875	1725	1875	3250	3625	3625
Noise *4	75 dB or less							80 dB or less		
Cooling fan Voltage	Single-phase $200 \mathrm{~V} / 50 \mathrm{~Hz}$ Single-phase 200 V to $230 \mathrm{~V} / 60 \mathrm{~Hz}$			Three-phase $200 \mathrm{~V} / 50 \mathrm{~Hz}$ Three-phase 200 to $230 \mathrm{~V} / 60 \mathrm{~Hz}$						
$\left.\begin{array}{l\|l\|}\hline \text { (with thermal } \\ \text { protector) *5 }\end{array}\right)$ Input *2	$\begin{gathered} 36 / 55 \mathrm{~W} \\ (0.26 / \\ 0.32 \mathrm{~A}) \end{gathered}$	$\begin{gathered} 22 / 28 \mathrm{~W} \\ (0.11 / 0.13 \mathrm{~A}) \end{gathered}$		$\begin{gathered} 55 / 71 \mathrm{~W} \\ (0.37 / 0.39 \mathrm{~A}) \end{gathered}$				$\begin{gathered} 100 / 156 \mathrm{~W} \\ (0.47 / 0.53 \mathrm{~A}) \end{gathered}$		
Surrounding air temperature, humidity	-10 to $+40^{\circ} \mathrm{C}$ (non-freezing), $90 \% \mathrm{RH}$ or less (non-condensing)									
Structure (Protective structure)	Totally enclosed forced draft system (Motor: IP44, cooling fan: IP23S) *3									
Detector	Encoder 2048P/R, A phase, B phase, Z phase +12VDC power supply									
Equipment	Encoder, thermal protector, fan									
Heat resistance class	F									
Vibration rank	V10									
Approx. mass (kg)	41	52	62	99	113	138	160	238	255	255

-400V class (Mitsubishi dedicated motor [SF-V5RUH (1500r/min series)])

Motor model SF-V5RUH믄		5	7	11	15	18	22	30	37	45
Applicable inverter model FR-A741-ロपK		7.5	11	15	18.5	22	30	37	45	55
Rated output (kW)		5.5	7.5	11	15	18.5	22	30 *	37 *1	45 *
Rated torque ($\mathrm{N} \cdot \mathrm{m}$)		35.0	47.7	70.0	95.5	118	140	191	235	286
Maximum torque 150\% 60s ($\mathrm{N} \cdot \mathrm{m}$)		52.4	71.6	105	143	176	211	287	353	429
Rated speed (r/min)						1500				
Maximum speed (r/min)						3000				
Frame No.		132 S	132M	160M	160L	180M	180M	200L	200L	200L
Inertia moment J$\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$		275	400	750	875	1725	1875	3250	3625	3625
Noise *4		75 dB or less						80 dB or less		
Cooling fan (with thermal protector) *5	Voltage	Single-phase $200 \mathrm{~V} / 50 \mathrm{~Hz}$Single-phase 200 V to $230 \mathrm{~V} /$60 Hz		Three-phase 380 to $400 \mathrm{~V} / 50 \mathrm{~Hz}$ Three-phase 400 to $460 \mathrm{~V} / 60 \mathrm{~Hz}$						
	Input *1	$\begin{gathered} 22 / 28 \mathrm{~W} \\ (0.11 / 0.13 \mathrm{~A}) \\ \hline \end{gathered}$		$\begin{gathered} 55 / 71 \mathrm{~W} \\ (0.19 / 0.19 \mathrm{~A}) \\ \hline \end{gathered}$				$\begin{gathered} \hline 100 / 156 \mathrm{~W} \\ (0.27 / 0.30 \mathrm{~A}) \\ \hline \end{gathered}$		
Surrounding air temperature, humidity		-10 to $+40^{\circ} \mathrm{C}$ (non-freezing), 90% RH or less (non-condensing)								
Structure (Protective structure)		Totally enclosed forced draft system (Motor: IP44, cooling fan: IP23S) *3								
Detector		Encoder 2048P/R, A phase, B phase, Z phase +12VDC power supply								
Equipment		Encoder, thermal protector, fan								
Heat resistance class		F								
Vibration rank		V10								
Approx. mass (kg)		52	62	99	113	138	160	238	255	255

*1 80% output in the high-speed range. (The output is reduced when the speed is $2400 \mathrm{r} / \mathrm{min}$ or more. Contact us separately for details.)
*2 Power (current) at $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$.
*3 Since a motor with brake has a window for gap check, the protective structure of both the cooling fan section and brake section is IP20. S of IP23S is an additional code indicating the condition that protection from water intrusion is established only when a cooling fan is not operating.
*4 The value when high carrier frequency is set (Pr. $72=6, \operatorname{Pr} .240=0$).
*5 The cooling fan is equipped with a thermal protector. The cooling fan stops when the coil temperature exceeds the specified value in order to protect the fan motor. The cooling fan re-starts when the coil temperature drops to normal.

7.2 Common specifications

*1 Available only when the option (FR-A7AP/FR-A7AL) is mounted.
*2 Available only when the option (FR-A7AL) is mounted
*2 Available only when the option (FR-A7AL) is mounted.
*3 Can be displayed only on the operation panel (FR-DU07).
*4 Can be displayed only on the parameter unit (FR-PU07).
Temperature applicable for a short period in transit, etc.
This protective function is not available in the initial status.

7.3 Outline dimension drawings

7.3.1 Inverter outline dimension drawings
-FR-A721-5.5K, 7.5K

- FR-A741-5.5K, 7.5K

-FR-A721-11K, 15K
-FR-A741-11K, 15K

-FR-A721-18.5K, 22K

-FR-A741-18.5K, 22K

(Unit: mm)

-FR-A721-37K, 45K
-FR-A741-37K, 45K

-FR-A721-55K
-FR-A741-55K

- Operation panel (FR-DU07)

(Unit: mm)
- Parameter unit (option) (FR-PU07)
<Outline drawing>

<Panel cutting dimension drawing>

*1 When installing FR-PU07 on the enclosure, etc., remove screws for fixing the FR-PU07 to the inverter or fix the screws to the FR-PU07 with M3 nuts.
*2 Select the installation screws whose length will not exceed the effective depth of the installation screw hole.
(Unit: mm)

7.3.2 Dedicated motor outline dimension drawings

- Dedicated motor (SF-V5RU(H)) outline dimension drawings (standard horizontal type)

Frame Number 160M, 160L, 180M, 180L
SF-V5RU(H) $11 \overline{\mathrm{~K}}, \mathbf{1 5} \overline{\mathrm{~K}}, 1 \mathbf{1 8} \mathbf{K}, \mathbf{2 2 K}$

Frame Number 200L
SF-V5RU(H) $\mathbf{3 0} \mathbf{K}, \mathbf{3 7} \overline{\mathrm{K}}, \mathbf{4 5 K}$

Make sure to earth the earth terminal of the frame installation foot as well as the earth terminal in the terminal box.

Dimensions table

(Unit: mm)

$\begin{array}{\|c\|} \hline \text { SF-V5RU } \\ \square K \end{array}$	$\begin{array}{\|c} \hline \text { SF-V5RU } \\ \text { पK1 } \end{array}$	$\begin{gathered} \hline \text { SF-V5RU } \\ \square K 3 \end{gathered}$	$\begin{gathered} \text { SF-V5RU } \\ \square K 4 \end{gathered}$	Frame No.	$\begin{gathered} \text { Mass } \\ \text { (kg) } \end{gathered}$	Motor																							Terminal Screw Size		
						A	B	C	D	E	F	H	1	KA	KG	KL(KP)	L	M	ML	N	XB	Q	QK	R	S	T	U	W	U,V,W	A,B,C)	G1,G2
3	-	-	-	112M	41	278	135	112	228	95	70	226	253	69	93	242	478	230	242	180	70	60	45	200	28j6	7	4	8	M6	M4	M4
5	3	-	-	132 S	52	303	152	132	266	108	70	265	288	75	117	256	542	256	268	180	89	80	63	239	38k6	8	5	10	M6	M4	M4
7	5	3	-	132M	62	322	171	132	266	108	89	265	288	94	117	256	580	256	268	218	89	80	63	258	38k6	8	5	10	M6	M4	M4
11	7	5	-	160M	99	412	198	160	318	127	105	316	367	105	115	330	735	310	-	254	108	-	-	323	42k6	8	5	12	M8	M4	M4
15	11	7	3	160L	113	434	220	160	318	127	127	316	367	127	115	330	779	310	-	298	108	-	-	345	42k6	8	5	12	M8	M4	M4
18	-	-	-	180M	138	438.5	225.5	180	363	139.5	120.5	359	410	127	139	352	790	335	-	285	121	-	-	351.5	48k6	9	5.5	14	M8	M4	M4
22	15	11	-		160	43.5	225.5	180	363	T3. 5	120.5	359	410	127	- 3	352	790	335	-	285	121	-	-	351.5	48 k	9	5.5		м8	M4	M4
-	18	15	5	180L	200	457.5	242.5	180	363	139.5	139.5	359	410	146	139	352	828	335	-	323	121	-	-	370.5	$55 \mathrm{m6}$	10	6	16	M8	M4	M4
30	-	-	7	200L	238	483.5	267.5	200	406	159	152.5	401	-	145	487		909	390	-	361	133	-									
37, 45	22, 30	18, 22	-		255	483.5	267.5	200	406	159	152.5	401	-	145	487	(546)	909	390	-	361	133	-	-	425.5	60 mb	-	-	-	M10	M4	M4
-	37	30	11, 15	225 S	320	500	277	225	446	178	143	446	-	145	533	(592)	932	428	-	342	149	-	-	432	65 m 6	-	-	-	M10	M4	M4

[^11]2. Leave an enough clearance between the fan suction port and wall to ensure adequate cooling. Also, check that the ventilation direction of a fan is from the opposite load side to the load side.
3 The size difference of top and bottom of the shaft center height is ${ }_{-0.5}^{0}$
4 The 400 V class motor has -H at the end of its type name.

- Dedicated motor (SF-V5RU(H)) outline dimension drawings (standard horizontal type with brake)

Frame Number 112M, 132S, 132M

Frame Number 160M, 160L, 180M, 180L
SF-V5RU(H) '11K' ', $15 \bar{K} \bar{B},{ }^{\prime} 18 \bar{K} \bar{\prime},{ }^{\prime} 22 \bar{K} \bar{B}$

Section AA

Frame leg viewed Main terminal box from above

Main terminal box \quad For motor $(\mathrm{U}, \mathrm{V}, \mathrm{W})$

Frame Number 200L
SF-V5RU(H) $\mathbf{3 0} \bar{K} \bar{B}, 3 \overline{7} \bar{K} \bar{B}, 45 \bar{K} \bar{B}$

indicates an inserting position of a bolt with hex head holes for manual opening.
Make sure to earth the earth terminal of the frame installation foot as well as the earth terminal in the terminal box.

Dimensions table
(Unit: mm)

SF-V5RU पK	SF-V5RU पK1	$\begin{gathered} \hline \text { SF-V5RU } \\ \square K 3 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { SF-V5RU } \\ \square K 4 \end{array}$	$\begin{aligned} & \text { Frame } \\ & \text { No. } \end{aligned}$	Mass (kg)	Motor																						ft End							Terminal Screw Size			
						A	B	C	D	E	F	G	H	1	J	KA	KD	KG	KL	KP	L	M	ML	N	X	XB	z	Q	QK	R	S	T	U	W	U, , W,	A, , (C)	G1,G2	B1,82
3	-	-	-	112M	53	355	135	112	228	95	70	6.5	-	-	40	69	27	93	242	290	555	230	242	180	4	70	12	60	45	200	28j6	7	4	8	M6	M4	M4	M4
5	3	-	-	132S	70	416	152	132	266	108	70	6.5	-	-	40	75	27	117	256	329	655	256	268	180	4	89	12	80	63	239	38k6	8	5	10	M6	M4	M4	M4
7	5	3	-	132M	80	435	171	132	266	108	89	6.5	-	-	40	94	27	117	256	329	693	256	268	218	4	89	12	80	63	258	38k6	8	5	10	M6	M4	M4	M4
11	7	5	-	160M	140	522.5	198	160	318	127	105	8	-	-	50	105	56	115	330	391	845.5	310	-	254	4	108	14.5	110	90	323	42k6	8	5	12	M8	M4	M4	M4
15	11	7	3	160L	155	544.5	220	160	318	127	127	8	-	-	50	127	56	115	330	391	889.5	310	-	298	4	108	14.5	110	90	345	42k6	8	5	12	M8	M4	M4	M4
18	-	-	-	180M	185	568.5	225.5	180	363	139.5	120.5		-	-	50	127	56	139	352	428	920			285	4	121	14.5	110	90	351.5		9	5.5	14	M8	M4	M4	M
22	15	11	-	180M	215		225.5	180	363	139.5	120.5	8	-	-	50	127	56	139	352	428	920	335	-	285	4	121	14.5	110	90	351.5	48k6	9	5.5	14	M8	M4	M4	M4
-	18	15	5	180L	255	587.5	242.5	180	363	139.5	139.5	8	-	-	50	146	56	139	352	428	958	335	-	323	4	121	14.5	110	90	370.5	55m6	10	6	16	M8	M4	M4	M
30	-	-	7		305	644.5	267.5	200	406	159	152.5	11	-	-	70	145	90	487	-	546	1070	390	-	361	4	133	18.5	140	110	425.5	60 m 6	11	7	18	M10	M4	M4	M4
37, 45	22, 30	18, 22	-		330		26.5	200	406	159	152.5	11	-	-									-															
-	37	30	11, 15	225 S	395	659	277	225	446	178	143	11	-	-	70	145	90	533	-	592	1091	428	-	342	4	149	18.5	140	110	432	65 m 6	11	7	18	M10	M4	M4	M4

Note)1. Install the motor on the floor and use it with the shaft horizontal.
2. Leave an enough clearance between the fan suction port and wall to ensure adequate cooling Also, check that the ventilation direction of a fan is from the opposite load side to the load side
3. The size difference of top and bottom of the shaft center height is ${ }_{-0.5}^{0}$
4. The 400 V class motor has -H at the end of its type name.
5. Since a brake power device is a stand-alone, install it inside the enclosure.
(This device should be arranged at the customer side.)

- Dedicated motor (SF-V5RU(H)) outline dimension drawings (flange type)

Dimensions table

SF-V5RU	SF-V5RU	SF-V5RU	SF-V5RU	Flange	Frame	Mass	Motor													Shaft End							Terminal Screw Size		
पK	पK1	पK3	पK4	Number	No.	(kg)	D	IE	KB	KD	KL	LA	LB	LC	LE	LG	LL	LN	LZ	LR	Q	QK	S	T	U	W	U,V,W	A,B,(C)	G1,G2
3	-	-	-	FF215	112M	46	228	141	239	27	242	215	180j6	250	4	16	448	4	14.5	60	60	45	28j6	7	4	8	M6	M4	M4
5	3	-	-	FF265	132 S	65	266	156	256	27	256	265	230j6	300	4	20	484	4	14.5	80	80	63	38k6	8	5	10	M6	M4	M4
7	5	3	-	FF265	132M	70	266	156	294	27	256	265	230j6	300	4	20	522	4	14.5	80	80	63	38k6	8	5	10	M6	M4	M4
11	7	5	-	FF300	160M	110	318	207	318	56	330	300	250j6	350	5	20	625	4	18.5	110	110	90	42k6	8	5	12	M8	M4	M4
15	11	7	3	FF300	160L	125	318	207	362	56	330	300	250j6	350	5	20	669	4	18.5	110	110	90	42k6	8	5	12	M8	M4	M4
18	-	-	-	FF350	180M	160	363	230	378.5	56	352	350	300j6	400	5	20	690	4	18.5	110	110	90	48k6	9	5.5	14	M8	M4	M4
22	15	11	-	F350	180M	185																							
-	18	15	5	FF350	180L	225	363	230	416.5	56	352	350	300j6	400	5	20	728	4	18.5	110	110	90	55 m 6	10	6	16	M8	M4	M4
30	-	-	7	FF400	200L	270	406	255	485	90	346	400	350j6	450	5	22	823.5	8	18.5	140	140	110	60m6	11	7	18	M10	M4	M4
37, 45	22, 30	18, 22	-			290																							

Note)1. Install the motor on the floor and use it with the shaft horizontal.
For use under the shaft, the protection structure of the cooling fan is IP20.
2. Leave an enough clearance between the fan suction port and wall to ensure adequate cooling Also, check that the ventilation direction of a fan is from the opposite load side to the load side.
3. The size difference of top and bottom of the shaft center height is ${ }_{-0.5}^{0}$

4 The 400 V class motor has -H at the end of its type name.

- Dedicated motor (SF-V5RU(H)) outline dimension drawings (flange type with brake)

Frame Number 160M, 160L SF-V5RUF(H) $11 \overline{\mathrm{~K}} \overline{\mathrm{~B}}, \mathbf{1 5 \overline { K } \overline { B }}$

Dimensions table
(Unit: mm)

$\begin{gathered} \hline \text { SF-V5RU } \\ \square K \end{gathered}$	$\begin{gathered} \hline \text { SF-V5RU } \\ \text { पK1 } \end{gathered}$	$\begin{gathered} \text { SF-V5RU } \\ \square K 3 \end{gathered}$	$\begin{gathered} \text { SF-V5RU } \\ \text { पK4 } \end{gathered}$	FlangeNumber	$\begin{array}{\|c\|} \hline \text { Frame } \\ \text { No. } \end{array}$	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Mass } \\ \text { (kg) } \end{array} \\ \hline \end{array}$	Motor													Shaft End							Terminal Screw Size			
							D	KB	KD	KL	KP	LA	LB	LC	LE	LG	LL	LN	LZ	LR	Q	QK	S	T	U	W	U,V,W	A,B,(C)	B1,B2	G1,G2
3	-	-	-	FF215	112M	58	228	239	27	242	178	215	180j6	250	4	16	525	4	14.5	60	60	45	28j6	7	4	8	M6	M4	M4	M4
5	3	-	-	FF265	132 S	83	266	256	27	256	197	265	230j6	300	4	20	597	4	14.5	80	80	63	38k6	8	5	10	M6	M4	M4	M4
7	5	3	-	FF265	132M	88	266	294	27	256	197	265	230j6	300	4	20	635	4	14.5	80	80	63	38k6	8	5	10	M6	M4	M4	M4
11	7	5	-	FF300	160M	151	318	318	56	330	231	300	250j6	350	5	20	735.5	4	18.5	110	110	90	42k6	8	5	12	M8	M4	M4	M4
15	11	7	3	FF300	160L	167	318	362	56	330	231	300	250j6	350	5	20	779.5	4	18.5	110	110	90	42k6	8	5	12	M8	M4	M4	M4

Note)1. Install the motor on the floor and use it with the shaft horizontal.
2. Leave an enough clearance between the fan suction port and wall to ensure adequate cooling

Also, check that the ventilation direction of a fan is from the opposite load side to the load side.
3. The size difference of top and bottom of the shaft center height is ${ }_{-0.5}^{0}$
. The 400 V class motor has -H at the end of its type name.
5. Since a brake power device is a stand-alone, install it inside the enclosure.
(This device should be arranged at the customer side.)

7.4 Installation of the heatsink portion outside the enclosure for use

When encasing the inverter in an enclosure, the generated heat amount in an enclosure can be greatly reduced by installing the heatsink portion of the inverter outside the enclosure. When installing the inverter in a compact enclosure, etc., this installation method is recommended.

7.4.1 Protrusion of heatsink

(1) Panel cutting

Cut the panel of the enclosure according to the inverter capacity.

- FR-A721-5.5K to 55K, FR-A741-5.5K to 55K

Inverter model	W	W 1	H	H 1	H 2	H 3	C
FR-A721-5.5K, 7.5K FR-A741-5.5K, 7.5K	240	190	454	434	12	8	M 8
FR-A721-11K, 15K FR-A741-11K, 15K	290	220	575	548	17	10	M 8
FR-A721-18.5K, 22K	376	290	575	546	17	12	M 10
FR-A741-18.5K, 22K	346	260	575	546	17	12	M 10
FR-A721-30K FR-A741-30K	436	350	675	646	17	12	M 10
FR-A721-37K, 45K FR-A741-37K, 45K	456	370	670	641	17	12	M 12
FR-A721-55K FR-A741-55K	586	480	870	841	17	12	M 12

Unit: mm
(2) Shift and removal of a rear side installation frame

One installation frame is attached to each of the upper and lower parts of the inverter. Change the position of the rear side installation frame on the upper and lower sides of the inverter to the front side as shown on the right. When changing the installation frames, make sure that the installation orientation is correct.

(3) Installation of the inverter

Push the inverter heatsink portion outside the enclosure and fix the enclosure and inverter with upper and lower installation frame.

Inverter model	D1
FR-A721-5.5K, 7.5K FR-A741-5.5K, 7.5K	100
FR-A721-11K, 15K FR-A741-11K, 15K	125
FR-A721-18.5K, 22K FR-A741-18.5K, 22K	130
FR-A721-30K FR-A741-30K	145
FR-A721-37K, 45K FR-A741-37K, 45K	163
FR-A721-55K FR-A741-55K	190

(Unit: mm)

CAUTION

- Having a cooling fan, the cooling section which comes out of the enclosure can not be used in the environment of water drops, oil, mist, dust, etc.
Be careful not to drop screws, dust etc. into the inverter and cooling fan section.

APPENDICES

Appendix 1 Main differences and compatibilities with the FR-A700 series

Item	FR-A700	FR-A701
Model configuration	200 V class $\ldots . . .0 .4 \mathrm{~K}$ to 90 K 400 V class $\ldots . .0 .4 \mathrm{~K}$ to 500 K	200 V class $\ldots . .5 .5 \mathrm{~K}$ to 55 K 400 V class $\ldots . .5 .5 \mathrm{~K}$ to 55 K
Regenerative braking torque	5.5/7.5K...........100\%torque 2\%ED 11 K to 55 K 20% torque continuous	100\% torque/continuous 150% torque 60s
Built-in EMC filter	With	Without
Changed/cleared functions	Pr. 30 Regenerative function selection, Pr. 70 Special regenerative brake duty	Deleted
	Pr. 872 Input phase loss protection selection Initial value "0" (without input phase protection)	The initial value is changed to "1" (with input phase failure protection)
	Protective functions E.BE	Deleted E.4, E.10, E.8, E. 15 added
Stand-alone option	- AC reactor (FR-HAL) - DC reactor (FR-HEL) - High-duty brake resistor (FR-ABR) - Power regeneration common converter (FR-CV) - High power factor converter (FR-HC) - Power regeneration converter (FR-RC)	Not available (AC reactor (FR-HAL) is built-in) * Note that an AC reactor (FR-HAL) should be used only when a thyristor load exists in the same power supply system and protective function E. 4 and E. 10 activate.
Outline dimension Installation size	Not compatible	

Appendix 2 Instructions for compliance with the EU Directives (400V class only)

The EU Directives are issued to standardize different national regulations of the EU Member States and to facilitate free movement of the equipment, whose safety is ensured, in the EU territory.
Since 1996, compliance with the EMC Directive that is one of the EU Directives has been legally required. Since 1997, compliance with the Low Voltage Directive, another EU Directive, has been also legally required. When a manufacturer confirms its equipment to be compliant with the EMC Directive and the Low Voltage Directive, the manufacturer must declare the conformity and affix the CE marking.

- The authorized representative in the EU

The authorized representative in the EU is shown below.
Name: Mitsubishi Electric Europe B.V.
Address: Gothaer Strasse 8, 40880 Ratingen, Germany

- Note

We declare that this inverter, when equipped with the dedicated EMC filter, conforms with the EMC Directive in industrial environments and affix the CE marking on the inverter. When using the inverter in a residential area, take appropriate measures and ensure the conformity of the inverter used in the residential area.

(1) EMC Directive

We declare that this inverter (400 V class only), when equipped with the EMC Directive compliant EMC filter, conforms with the EMC Directive and affix the CE marking on the inverter.

- EMC Directive: 2004/108/EC
- Standard(s): EN61800-3:2004 (Second environment / PDS Category "C3")

Note: First environment
Environment including residential buildings. Includes building directly connected without a transformer to the low voltage power supply network which supplies power to residential buildings.
Second environment
Environment including all buildings except buildings directly connected without a transformer to the lower voltage power supply network which supplies power to residential buildings.

- Note

* Set the EMC Directive compliant EMC filter to the inverter. Insert line noise filters and ferrite cores to the power and control cables as required.
* Connect the inverter to an earthed power supply.
* Install a motor, the EMC Directive compliant EMC filter, and a control cable according to the instructions written in the EMC Installation Guidelines (BCN-A21041-204).
* The cable length between the inverter and the motor is 20 m maximum.
* Confirm that the final integrated system with the inverter conforms with the EMC Directive

(2) Low Voltage Directive

We have self-confirmed our inverters as products compliant to the Low Voltage Directive (Conforming standard EN 61800-$5-1$) and affix the CE marking on the inverters.

- Outline of instructions
* Do not use an earth leakage circuit breaker as an electric shock protector without connecting the equipment to the earth. Connect the equipment to the earth securely.
* Wire the earth (ground) terminal independently. (Do not connect two or more cables to one terminal.)
* Use the cable sizes on page 18 under the following conditions.
- Surrounding air temperature: $40^{\circ} \mathrm{C}$ maximum

If conditions are different from above, select appropriate wire according to EN60204 ANNEX C TABLE 5.

* Use a tinned (plating should not include zinc) crimping terminal to connect the earth cable. When tightening the screw, be careful not to damage the threads.
For use as a product compliant with the Low Voltage Directive, use PVC cable on page 16.
* Use the moulded case circuit breaker and magnetic contactor which conform to the EN or IEC Standard.
* When using an earth leakage circuit breaker, use a residual current operated protective device (RCD) of type B (breaker which can detect both $A C$ and $D C$). If not, provide double or reinforced insulation between the inverter and other equipment, or put a transformer between the main power supply and inverter.
* Use the inverter under the conditions of overvoltage category II (usable regardless of the earth (ground) condition of the power supply), overvoltage category III (usable with the earthed-neutral system power supply) and pollution degree 2 or lower specified in IEC664.
- To use the inverter under the conditions of pollution degree 2, install it in the enclosure of IP 2 X or higher.
- To use the inverter under the conditions of pollution degree 3, install it in the enclosure of IP54 or higher.
*On the input and output of the inverter, use cables of the type and size set forth in EN60204 Appendix C.
*The operating capacity of the relay outputs (terminal symbols A1, B1, C1, A2, B2, C2) should be 30VDC, 0.3A. (Relay output has basic isolation from the inverter internal circuit.)
*Control circuit terminals on page 12 are safely isolated from the main circuit.
*Environment

	Running	In Storage	During Transportation
Ambient Temperature	$-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$
Humidity	$90 \% \mathrm{RH}$ or less	$90 \% \mathrm{RH}$ or less	$90 \% \mathrm{RH}$ or less
Maximum Altitude	1000 m	1000 m	10000 m

Details are given in the technical information "Low Voltage Directive Conformance Guide" (BCN-A21041-203). Please contact your sales representative.

Appendix 3 Instructions for UL and cUL Compliance

（Conforming standard UL 508C，CSA C22．2 No．14）

（1）Installation

This inverter is UL－listed as a product for use in an enclosure．
Design an enclosure so that the inverter surrounding air temperature，humidity and atmosphere satisfy the specifications．（Refer to page 184．）

Wiring protection

For installation in the United States，branch circuit protection must be provided in accordance with the National Electrical Code and any applicable provincial codes．
For installation in Canada，branch circuit protection must be provided in accordance with the Canadian Electrical Code and any applicable provincial codes．
Provide the appropriate UL and cUL listed Class RK5 or Class T type fuse or UL489 molded case circuit breaker （MCCB）that is suitable for branch circuit protection in accordance with the table below．

| FR－A721－ロロK | $\mathbf{5 . 5}$ | $\mathbf{7 . 5}$ | $\mathbf{1 1}$ | $\mathbf{1 5}$ | $\mathbf{1 8 . 5}$ | $\mathbf{2 2}$ | $\mathbf{3 0}$ | $\mathbf{3 7}$ | $\mathbf{4 5}$ | $\mathbf{5 5}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Rated fuse voltage（V） | 240 V or more | | | | | | | | | |
| Fuse maximum allowable rating（A）＊ | 70 | 125 | 150 | 200 | 200 | 250 | 300 | 350 | 400 | 500 |
| Molded case circuit breaker (MCCB)
 maximum allowable rating $(\mathrm{A})^{*}$ | 60 | 80 | 110 | 150 | 175 | 225 | 250 | 350 | 400 | 500 |

FR－A741－ロロK	$\mathbf{5 . 5}$	$\mathbf{7 . 5}$	$\mathbf{1 1}$	$\mathbf{1 5}$	$\mathbf{1 8 . 5}$	$\mathbf{2 2}$	$\mathbf{3 0}$	$\mathbf{3 7}$	$\mathbf{4 5}$	$\mathbf{5 5}$		
Rated fuse voltage（V）	480 V or more											
Fuse maximum allowable rating（A）	＊	35	60	70	90	100	125	150	175	200		

＊Maximum allowable rating by US National Electrical Code．
Exact size must be chosen for each installation．

（2）Wiring of the power supply and motor

For wiring the input（R／L1，S／L2，T／L3）and output（U，V，W）terminals of the inverter，use the UL Listed copper，stranded wires（rated at $75^{\circ} \mathrm{C}$ ）and round crimping terminals．Crimp the crimping terminals with the crimping tool recommended by the terminal maker．

（3）Wiring of control circuit

Use a 16－18AWG cupper cable and perform wiring without using crimping terminals．

（4）Short circuit ratings

－ 200 V class
Suitable For Use in A Circuit Capable Of Delivering Not More Than 100kA rms Symmetrical Amperes，264V Maximum．
－ 400 V class
Suitable For Use in A Circuit Capable Of Delivering Not More Than 100kA rms Symmetrical Amperes，528V Maximum．

(5) Motor overload protection

This inverter is certified as a motor overload protection device by UL.
When using the electronic thermal relay function as motor overload protection, set the rated motor current to Pr. 9 Electronic thermal O/L relay.

Electronic thermal relay function operation characteristic

This function detects the overload (overheat) of the motor, stops the operation of the inverter's output transistor, and stops the output.
(The operation characteristic is shown on the left)
When using the Mitsubishi constant-torque motor

1) Set "1" or any of "13" to "18", "50", " 53 ", " 54 " in Pr. 71. (This provides a 100\% continuous torque characteristic in the low-speed range.)
2) Set the rated current of the motor in Pr. 9.
*1 When a value 50% of the inverter rated output current (current value) is set in $\operatorname{Pr} .9$
*2 The \% value denotes the percentage to the inverter rated output current. It is not the percentage to the motor rated current.
*3 When you set the electronic thermal relay function dedicated to the Mitsubishi constant-torque motor, this characteristic curve applies to operation at 6 Hz or higher.

CAUTION

. Protective function by electronic thermal relay function is reset by inverter power reset and reset signal input. Avoid unnecessary reset and power-off.
. When multiple motors are operated by a single inverter, protection cannot be provided by the electronic thermal relay function. Install an external thermal relay to each motor.

- When the difference between the inverter and motor capacities is large and the setting is small, the protective characteristics of the electronic thermal relay function will be deteriorated. In this case, use an external thermal relay.
- A special motor cannot be protected by the electronic thermal relay function. Use the external thermal relay.
. Electronic thermal relay does not function when 5% or less of inverter rated current is set to electronic thermal relay setting.

Appendix 4 Control mode-based parameter (function) correspondence table and instruction code list

*1 These instruction codes are used for parameter read and write by using Mitsubishi inverter protocol with the RS-485 communication.
(Refer to Chapter 4 of the Instruction Manual (Applied) for RS-485 communication)
*2 Validity and invalidity according to operation mode are as follows:
O:Usable parameter
\times :Unusable parameter
Δ :Parameters available only during position control set by parameter
*3 "O" indicates valid and " \times " indicates invalid of "parameter copy", "parameter clear", and "all parameter clear".
*4 Parameters can be used with conditions. Refer to Chapter 4 of the Instruction Manual (Applied) for details.
*5 When a communication option is installed, parameter clear (lock release) during password lock (Pr. $297 \neq 9999$) can be performed only from the communication option.
*6 These parameters are communication parameters that are not cleared when parameter clear (all clear) is executed from RS-485 communication.
(Refer to Chapter 4 of the Instruction Manual (Applied) for RS-485 communication)
Symbols in the table indicate parameters which function when an option is mounted.

$A X$
$N C$.......... FR-A7AX, AY FR-A7AY, AR FR-A7AR, AP FR-A7AP, AL FR-A7AL, AZ FR-A7AZ,

Param eter	Name	Instruction Code*1			Control Mode-based Correspondence Table *2									
		$\begin{aligned} & \text { ס } \\ & \text { ס } \\ & \text { 区 } \end{aligned}$			V/F Control	Advanced magnetic flux vector control	Vector control			Real sensorless vector control				
							Speed control	Torque control	Position control	응 은 के	$\begin{aligned} & \text { 은 } \\ & \text { 믄 } \\ & \text { ㅇ } \end{aligned}$			
0	Torque boost	00	80	0	\bigcirc	\times	\times	\times	\times	\times	\times	\bigcirc	\bigcirc	\bigcirc
1	Maximum frequency	01	81	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2	Minimum frequency	02	82	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
3	Base frequency	03	83	0	\bigcirc	\times	\times	\times	\times	\times	\times	\bigcirc	\bigcirc	\bigcirc
4	Multi-speed setting (high speed)	04	84	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Δ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
5	Multi-speed setting (middle speed)	05	85	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Δ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
6	Multi-speed setting (low speed)	06	86	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Δ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
7	Acceleration time	07	87	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Δ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
8	Deceleration time	08	88	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Δ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
9	Electronic thermal O/L relay	09	89	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
10	DC injection brake operation frequency	OA	8A	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc	O	O
11	DC injection brake operation time	OB	$8 B$	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc
12	DC injection brake operation voltage	OC	8C	0	\bigcirc	\bigcirc	\times	\times	\times	$\bigcirc * 4$	$\bigcirc{ }^{*}$	\bigcirc	O	\bigcirc
13	Starting frequency	OD	8D	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
14	Load pattern selection	OE	8E	0	\bigcirc	\times	\times	\times	\times	\times	\times	\bigcirc	\bigcirc	\bigcirc
15	Jog frequency	OF	8F	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
16	Jog acceleration/ deceleration time	10	90	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc
17	MRS input selection	11	91	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
18	High speed maximum frequency	12	92	0	\bigcirc	\bigcirc	\times	\times	\times	\times	\times	O	O	O
19	Base frequency voltage	13	93	0	\bigcirc	\times	\times	\times	\times	\times	\times	\bigcirc	\bigcirc	\bigcirc
20	Acceleration/deceleration reference frequency	14	94	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Δ	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc
21	Acceleration/deceleration time increments	15	95	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Δ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
22	Stall prevention operation level (Torque limit level)	16	96	0	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\times	\bigcirc	O	\bigcirc
23	Stall prevention operation level compensation factor at double speed	17	97	0	\bigcirc	\bigcirc	\times	\times	\times	\times	\times	\bigcirc	\bigcirc	O
24	Multi-speed setting (speed 4)	18	98	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Δ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
25	Multi-speed setting (speed 5)	19	99	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Δ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

Param eter	Name	Instruction Code*1			Control Mode-based Correspondence Table *2									All Parameter Clear *3
		$\begin{aligned} & \text { d } \\ & \text { d } \\ & \text { జ } \end{aligned}$	$\stackrel{N}{4}$		V/F Control	Advanced magnetic flux vector control	Vector control			Real sensorless vector control				
							Speed control	Torque control	Position control	읓 을 के o	$\begin{aligned} & \text { 은 } \\ & \text { 흥 } \\ & \text { 응 } \end{aligned}$			
26	Multi-speed setting (speed 6)	$1 A$	$9 A$	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Δ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
27	Multi-speed setting (speed 7)	$1 B$	$9 B$	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Δ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
28	Multi-speed input compensation selection	1 C	9 C	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc
29	Acceleration/deceleration pattern selection	1D	9 D	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc
31	Frequency jump 1A	1F	9F	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
32	Frequency jump 1B	20	AO	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
33	Frequency jump 2A	21	A1	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
34	Frequency jump 2B	22	A2	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
35	Frequency jump 3A	23	A3	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
36	Frequency jump 3B	24	A4	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
37	Speed display	25	A5	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
41	Up-to-frequency sensitivity	29	A9	0	\bigcirc	\bigcirc	\bigcirc	\times	\times	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc
42	Output frequency detection	2 A	$A A$	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
43	Output frequency detection for reverse rotation	2B	$A B$	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
44	Second acceleration/ deceleration time	2 C	$A C$	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Δ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
45	Second deceleration time	2D	$A D$	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Δ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
46	Second torque boost	$2 E$	$A E$	0	\bigcirc	\times	\times	\times	\times	\times	\times	\bigcirc	\bigcirc	\bigcirc
47	Second V/F (base frequency)	$2 F$	$A F$	0	\bigcirc	\times	\times	\times	\times	\times	\times	\bigcirc	\bigcirc	\bigcirc
48	Second stall prevention operation current	30	B0	0	\bigcirc	\bigcirc	\times	\times	\times	\times	\times	O	\bigcirc	\bigcirc
49	Second stall prevention operation frequency	31	B1	0	\bigcirc	\bigcirc	\times	\times	\times	\times	\times	\bigcirc	O	\bigcirc
50	Second output frequency detection	32	B2	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc	\bigcirc
51	Second electronic thermal O/L relay	33	B3	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc
52	DU/PU main display data selection	34	B4	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	O	\bigcirc
54	FM terminal function selection	36	B6	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	O	\bigcirc
55	Frequency monitoring reference	37	B7	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc
56	Current monitoring reference	38	B8	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	O	\bigcirc
57	Restart coasting time	39	B9	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
58	Restart cushion time	3 A	$B A$	0	\bigcirc	\bigcirc	\times	\times	\times	\times	\times	\bigcirc	\bigcirc	\bigcirc
59	Remote function selection	$3 B$	$B B$	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
60	Energy saving control selection	3 C	$B C$	0	\bigcirc	\times	\times	\times	\times	\times	\times	\bigcirc	O	\bigcirc
61	Reference current	3D	$B D$	0	\bigcirc	\bigcirc	\bigcirc	\times	\times	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc
62	Reference value at acceleration	3E	BE	0	\bigcirc	\bigcirc	\bigcirc	\times	\times	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc
63	Reference value at dcceleration	3F	BF	0	\bigcirc	\bigcirc	\bigcirc	\times	\times	\bigcirc	\times	\bigcirc	O	\bigcirc
64	Starting frequency for elevator mode	40	C0	0	\bigcirc	\times	\times	\times	\times	\times	\times	\bigcirc	O	\bigcirc
65	Retry selection	41	C1	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
66	Stall prevention operation reduction starting frequency	42	C2	0	\bigcirc	\bigcirc	\times	\times	\times	\times	\times	O	\bigcirc	\bigcirc
67	Number of retries at fault occurrence	43	C3	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

Param eter	Name	Instruction Code*1			Control Mode-based Correspondence Table *2								ع* деәノ дәңәшеле	
		$\begin{aligned} & \mathbf{0} \\ & \mathbb{O} \\ & \mathbb{N} \end{aligned}$			V/F Control	Advanced magnetic flux vector control	Vector control			Real sensorless vector control				
							Speed control	Torque control	Position control	$\begin{aligned} & \text { 융 } \\ & \text { 엔 } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { 은 } \\ & \text { 흘 } \\ & \text { 응 } \end{aligned}$			
68	Retry waiting time	44	C4	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
69	Retry count display erase	45	C5	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
71	Applied motor	47	C7	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
72	PWM frequency selection	48	C8	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
73	Analog input selection	49	C9	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
74	Input filter time constant	4 A	$C A$	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc
75	Reset selection/ disconnected PU detection/ PU stop selection	$4 B$	CB	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\times
76	Alarm code output selection	4 C	CC	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
77 *	Parameter write selection	$4 D$	$C D$	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
78	Reverse rotation prevention selection	4E	CE	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	O
79 *	Operation mode selection	$4 F$	CF	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
80	Motor capacity	50	DO	0	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
81	Number of motor poles	51	D1	0	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
82	Motor excitation current	52	D2	0	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc
83	Rated motor voltage	53	D3	0	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
84	Rated motor frequency	54	D4	0	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
89	Speed control gain (magnetic flux vector)	59	D9	0	\times	\bigcirc	\times	\times	\times	\times	\times	\bigcirc	\times	\bigcirc
90	Motor constant (R1)	5 A	$D A$	0	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc
91	Motor constant (R2)	$5 B$	$D B$	0	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc
92	Motor constant (L1)	5 C	$D C$	0	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc
93	Motor constant (L2)	5D	$D D$	0	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc
94	Motor constant (X)	$5 E$	$D E$	0	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc
95	Online auto tuning selection	$5 F$	$D F$	0	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
96	Auto tuning setting/status	60	EO	0	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc
100	V/F1(first frequency)	00	80	1	\bigcirc	\times	\times	\times	\times	\times	\times	\bigcirc	\bigcirc	\bigcirc
101	V/F1(first frequency voltage)	01	81	1	\bigcirc	\times	\times	\times	\times	\times	\times	\bigcirc	\bigcirc	\bigcirc
102	V/F2(second frequency)	02	82	1	\bigcirc	\times	\times	\times	\times	\times	\times	\bigcirc	\bigcirc	\bigcirc
103	V/F2(second frequency voltage)	03	83	1	\bigcirc	\times	\times	\times	\times	\times	\times	\bigcirc	O	\bigcirc
104	V/F3(third frequency)	04	84	1	\bigcirc	\times	\times	\times	\times	\times	\times	\bigcirc	\bigcirc	\bigcirc
105	V/F3(third frequency voltage)	05	85	1	\bigcirc	\times	\times	\times	\times	\times	\times	\bigcirc	\bigcirc	\bigcirc
106	V/F4(fourth frequency)	06	86	1	\bigcirc	\times	\times	\times	\times	\times	\times	\bigcirc	\bigcirc	\bigcirc
107	V/F4(fourth frequency voltage)	07	87	1	\bigcirc	\times	\times	\times	\times	\times	\times	\bigcirc	O	\bigcirc
108	V/F5(fifth frequency)	08	88	1	\bigcirc	\times	\times	\times	\times	\times	\times	\bigcirc	\bigcirc	\bigcirc
109	V/F5(fifth frequency voltage)	09	89	1	\bigcirc	\times	\times	\times	\times	\times	\times	\bigcirc	\bigcirc	\bigcirc
110	Third acceleration/ deceleration time	OA	8A	1	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Δ	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc
111	Third deceleration time	OB	8B	1	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Δ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
112	Third torque boost	OC	8C	1	\bigcirc	\times	\times	\times	\times	\times	\times	\bigcirc	\bigcirc	\bigcirc
113	Third V/F (base frequency)	OD	8D	1	\bigcirc	\times	\times	\times	\times	\times	\times	\bigcirc	\bigcirc	\bigcirc
114	Third stall prevention operation current	OE	8E	1	\bigcirc	\bigcirc	\times	\times	\times	\times	\times	\bigcirc	O	\bigcirc
115	Thrid stall prevention operation frequency	OF	8F	1	\bigcirc	\bigcirc	\times	\times	\times	\times	\times	\bigcirc	O	\bigcirc

[^12]| Param eter | Name | Instruction Code*1 | | | Control Mode-based Correspondence Table *2 | | | | | | | ε_{*} Kdoj ләəәшeле | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | $\underset{~=~}{4}$ | | V/F
 Control | Advanced magnetic flux vector control | Vector control | | | Real sensorless vector control | | | | |
| | | | | | | | Speed control | Torque control | Position control | | | | | |
| 116 | Third output frequency detection | 10 | 90 | 1 | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc |
| 117 | PU communication station number | 11 | 91 | 1 | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc | O* | O* |
| 118 | PU communication speed | 12 | 92 | 1 | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc | O* | $\mathrm{O}^{*} 6$ |
| 119 | PU communication stop bit length | 13 | 93 | 1 | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc | O* | O* |
| 120 | PU communication parity check | 14 | 94 | 1 | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc | O* | O*6 |
| 121 | Number of PU communication retries | 15 | 95 | 1 | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc | O* | O* |
| 122 | PU communication check time interval | 16 | 96 | 1 | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc | O | O* | O*6 |
| 123 | PU communication waiting time setting | 17 | 97 | 1 | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc | O | ○* | O* |
| 124 | PU communication CR/LF presence/absence selection | 18 | 98 | 1 | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc | O | O* | O* |
| 125 | Terminal 2 frequency setting gain frequency | 19 | 99 | 1 | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \times | \bigcirc | \bigcirc | \bigcirc | \times | \bigcirc |
| 126 | Terminal 4 frequency setting gain frequency | 1A | 9A | 1 | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \times | \bigcirc | \bigcirc | O | \times | \bigcirc |
| 127 | PID control automatic switchover frequency | 1B | $9 B$ | 1 | \bigcirc | \bigcirc | \bigcirc | \times | \times | \bigcirc | \times | \bigcirc | \bigcirc | \bigcirc |
| 128 | PID action selection | 1 C | 9 C | 1 | \bigcirc | \bigcirc | \bigcirc | \times | \times | \bigcirc | \times | \bigcirc | \bigcirc | \bigcirc |
| 129 | PID proportional band | 1D | 9 D | 1 | \bigcirc | \bigcirc | \bigcirc | \times | \times | \bigcirc | \times | \bigcirc | \bigcirc | \bigcirc |
| 130 | PID integral time | 1E | $9 E$ | 1 | \bigcirc | \bigcirc | \bigcirc | \times | \times | \bigcirc | \times | \bigcirc | \bigcirc | \bigcirc |
| 131 | PID upper limit | 1F | $9 F$ | 1 | \bigcirc | \bigcirc | \bigcirc | \times | \times | \bigcirc | \times | \bigcirc | \bigcirc | \bigcirc |
| 132 | PID lower limit | 20 | AO | 1 | \bigcirc | \bigcirc | \bigcirc | \times | \times | \bigcirc | \times | \bigcirc | \bigcirc | \bigcirc |
| 133 | PID action set point | 21 | A1 | 1 | \bigcirc | \bigcirc | \bigcirc | \times | \times | \bigcirc | \times | \bigcirc | \bigcirc | \bigcirc |
| 134 | PID differential time | 22 | A2 | 1 | \bigcirc | \bigcirc | \bigcirc | \times | \times | \bigcirc | \times | \bigcirc | \bigcirc | \bigcirc |
| 135 | Electronic bypass sequence selection | 23 | A3 | 1 | \bigcirc | \bigcirc | \bigcirc | \times | \times | \bigcirc | \times | \bigcirc | \bigcirc | \bigcirc |
| 136 | MC switchover interlock time | 24 | A4 | 1 | \bigcirc | \bigcirc | \bigcirc | \times | \times | \bigcirc | \times | \bigcirc | \bigcirc | \bigcirc |
| 137 | Start waiting time | 25 | A5 | 1 | \bigcirc | \bigcirc | \bigcirc | \times | \times | \bigcirc | \times | \bigcirc | \bigcirc | \bigcirc |
| 138 | Bypass selection at a fault | 26 | A6 | 1 | \bigcirc | \bigcirc | \bigcirc | \times | \times | \bigcirc | \times | \bigcirc | \bigcirc | \bigcirc |
| 139 | Automatic switchover frequency from inverter to bypass operation | 27 | A7 | 1 | \bigcirc | \bigcirc | \bigcirc | \times | \times | \bigcirc | \times | \bigcirc | \bigcirc | \bigcirc |
| 140 | Backlash acceleration stopping frequency | 28 | A8 | 1 | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \times | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc |
| 141 | Backlash acceleration stopping time | 29 | A9 | 1 | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \times | \bigcirc | \bigcirc | O | \bigcirc | \bigcirc |
| 142 | Backlash deceleration stopping frequency | $2 A$ | $A A$ | 1 | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \times | \bigcirc | \bigcirc | O | \bigcirc | \bigcirc |
| 143 | Backlash deceleration stopping time | $2 B$ | $A B$ | 1 | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \times | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc |
| 144 | Speed setting switchover | 2 C | $A C$ | 1 | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc |
| 145 | PU display language selection | 2D | $A D$ | 1 | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \times | \times |
| 148 | Stall prevention level at 0V input | 30 | B0 | 1 | \bigcirc | \bigcirc | \times | \times | \times | \times | \times | O | \bigcirc | \bigcirc |
| 149 | Stall prevention level at 10 V input | 31 | B1 | 1 | \bigcirc | \bigcirc | \times | \times | \times | \times | \times | \bigcirc | \bigcirc | \bigcirc |
| 150 | Output current detection level | 32 | B2 | 1 | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc |

Param eter	Name	Instruction Code *1			Control Mode-based Correspondence Table *2							$\varepsilon_{*} \text { Кdoכ дәəәшeлed }$		All Parameter Clear *3
		$\begin{aligned} & \text { ס } \\ & \mathbb{\pi} \\ & \text { © } \end{aligned}$	$\stackrel{ \pm}{2}$		V/F Control	Advanced magnetic flux vector control	Vector control			Real sensorless vector control				
							Speed control	Torque control	Position control		$\begin{aligned} & \text { 은 } \\ & \text { 흥 힝 } \end{aligned}$			
151	Output current detection signal delay time	33	B3	1	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc
152	Zero current detection level	34	B4	1	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
153	Zero current detection time	35	B5	1	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
154	Voltage reduction selection during stall prevention operation	36	B6	1	\bigcirc	\bigcirc	\times	\times	\times	\times	\times	\bigcirc	\bigcirc	\bigcirc
155	RT signal function validity condition selection	37	B7	1	\bigcirc	\bigcirc	\bigcirc	\times	\times	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc
156	Stall prevention operation selection	38	B8	1	\bigcirc	\bigcirc	\times	\times	\times	\times	\times	\bigcirc	O	\bigcirc
157	OL signal output timer	39	B9	1	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
158	AM terminal function selection	3 A	$B A$	1	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc
159	Automatic switchover frequency range from bypass to inverter operation	3B	$B B$	1	\bigcirc	\bigcirc	\bigcirc	\times	\times	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc
160	User group read selection	00	80	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
161	Frequency setting/key lock operation selection	01	81	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc
162	Automatic restart after instantaneous power failure selection	02	82	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
163	First cushion time for restart	03	83	2	\bigcirc	\bigcirc	\times	\times	\times	\times	\times	\bigcirc	\bigcirc	\bigcirc
164	First cushion voltage for restart	04	84	2	\bigcirc	\bigcirc	\times	\times	\times	\times	\times	\bigcirc	O	\bigcirc
165	Stall prevention operation level for restart	05	85	2	\bigcirc	\bigcirc	\times	\times	\times	\times	\times	\bigcirc	O	\bigcirc
166	Output current detection signal retention time	06	86	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc
167	Output current detection operation selection	07	87	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc
168	Parameter for manufacturer setting. Do not set.													
170	Watt-hour meter clear	OA	8A	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc
171	Operation hour meter clear	OB	8B	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\times	\times
172	User group registered display/batch clear	OC	8 C	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\times
173	User group registration	OD	8D	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\times	\times
174	User group clear	OE	$8 E$	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\times	\times
178	STF terminal function selection	12	92	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc
179	STR terminal function selection	13	93	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc
180	RL terminal function selection	14	94	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc
181	RM terminal function selection	15	95	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc
182	RH terminal function selection	16	96	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc
183	RT terminal function selection	17	97	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc
184	AU terminal function selection	18	98	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc
185	JOG terminal function selection	19	99	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc

Param eter	Name	Instruction Code*1			Control Mode-based Correspondence Table *2									All Parameter Clear *3
			$\stackrel{ \pm}{ \pm}$		V/F Control	Advanced magnetic flux vector control	Vector control			Real sensorless vector control				
							Speed control	Torque control	Position control					
186	CS terminal function selection	1A	9 A	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\times	\bigcirc
187	MRS terminal function selection	$1 B$	$9 B$	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\times	\bigcirc
188	STOP terminal function selection	1 C	9 C	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\times	\bigcirc
189	RES terminal function selection	1D	9 D	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\times	\bigcirc
190	RUN terminal function selection	1E	$9 E$	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc
191	SU terminal function selection	1F	$9 F$	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\times	\bigcirc
192	IPF terminal function selection	20	AO	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\times	\bigcirc
193	OL terminal function selection	21	A1	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\times	\bigcirc
194	FU terminal function selection	22	A2	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\times	\bigcirc
195	ABC1 terminal function selection	23	A3	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\times	\bigcirc
196	ABC2 terminal function selection	24	A4	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\times	\bigcirc
232	Multi-speed setting (speed 8)	28	A8	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Δ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
233	Multi-speed setting (speed 9)	29	A9	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Δ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
234	Multi-speed setting (speed 10)	$2 A$	$A A$	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Δ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
235	Multi-speed setting (speed 11)	$2 B$	$A B$	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Δ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
236	Multi-speed setting (speed 12)	2 C	$A C$	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Δ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
237	Multi-speed setting (speed 13)	$2 D$	$A D$	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Δ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
238	Multi-speed setting (speed 14)	$2 E$	$A E$	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Δ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
239	Multi-speed setting (speed 15)	$2 F$	$A F$	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Δ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
240	Soft-PWM operation selection	30	B0	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	O	\bigcirc
241	Analog input display unit switchover	31	B1	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	O	\bigcirc
242	Terminal 1 added compensation amount (terminal 2)	32	B2	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	O	\bigcirc	\bigcirc	O	O
243	Terminal 1 added compensation amount (terminal 4)	33	B3	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc	O	O
244	Cooling fan operation selection	34	B4	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc
245	Rated slip	35	B5	2	\bigcirc	\times	\times	\times	\times	\times	\times	\bigcirc	\bigcirc	\bigcirc
246	Slip compensation time constant	36	B6	2	\bigcirc	\times	\times	\times	\times	\times	\times	\bigcirc	O	\bigcirc
247	Constant-power region slip compensation selection	37	B7	2	\bigcirc	\times	\times	\times	\times	\times	\times	\bigcirc	O	\bigcirc
250	Stop selection	3 3	$B A$	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
251	Output phase loss protection selection	3B	BB	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc
252	Override bias	$3 C$	$B C$	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
253	Override gain	3 D	$B D$	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
255	Life alarm status display	$3 F$	$B F$	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\times	\times
256	Inrush current limit circuit life display	40	CO	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\times	\times

Param eter	Name	Instruction Code * 1			Control Mode-based Correspondence Table *2							ε_{*} Kdoう ләəәшeлed		
		$\begin{aligned} & \text { ס্ণ } \\ & \underset{\sim}{\otimes} \end{aligned}$			V/F Control	Advanced magnetic flux vector control	Vector control			Real sensorless vector control				
							Speed control	Torque control	Position control		$\begin{aligned} & \text { O O } \\ & \text { 믄 } \\ & \text { ㅇ } \end{aligned}$			
257	Control circuit capacitor life display	41	C1	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\times	\times
258	Main circuit capacitor life display	42	C2	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\times	\times
259	Main circuit capacitor life measuring	43	C3	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc
261	Power failure stop selection	45	C5	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
262	Subtracted frequency at deceleration start	46	C6	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc
263	Subtraction starting frequency	47	C7	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc
264	Power-failure deceleration time 1	48	C8	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc
265	Power-failure deceleration time 2	49	C9	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc
266	Power failure deceleration time switchover frequency	4A	CA	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc
267	Terminal 4 input selection	$4 B$	CB	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc
268	Monitor decimal digits selection	4 C	CC	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc
269	Parameter for manufacturer setting. Do not set.													
270	Stop-on contact/load torque high-speed frequency control selection	4E	CE	2	\bigcirc	\bigcirc	\bigcirc	\times	\times	\bigcirc	\times	\bigcirc	O	\bigcirc
271	High-speed setting maximum current	4F	CF	2	\bigcirc	\bigcirc	\bigcirc	\times	\times	\bigcirc	\times	\bigcirc	O	\bigcirc
272	Middle-speed setting minimum current	50	D0	2	\bigcirc	\bigcirc	\bigcirc	\times	\times	\bigcirc	\times	\bigcirc	O	\bigcirc
273	Current averaging range	51	D1	2	\bigcirc	\bigcirc	\bigcirc	\times	\times	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc
274	Current averaging filter time constant	52	D2	2	\bigcirc	\bigcirc	\bigcirc	\times	\times	\bigcirc	\times	\bigcirc	O	\bigcirc
275	Stop-on contact excitation current low-speed multiplying factor	53	D3	2	\times	\bigcirc	\times	\times	\times	\times	\times	\bigcirc	O	\bigcirc
276	PWM carrier frequency at stop-on contact	54	D4	2	\times	\bigcirc	\times	\times	\times	\times	\times	\bigcirc	O	\bigcirc
278	Brake opening frequency	56	D6	2	\times	\bigcirc	\bigcirc	\times	\times	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc
279	Brake opening current	57	D7	2	\times	\bigcirc	\bigcirc	\times	\times	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc
280	Brake opening current detection time	58	D8	2	\times	\bigcirc	\bigcirc	\times	\times	\bigcirc	\times	\bigcirc	O	\bigcirc
281	Brake operation time at start	59	D9	2	\times	\bigcirc	\bigcirc	\times	\times	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc
282	Brake operation frequency	$5 A$	DA	2	\times	\bigcirc	\bigcirc	\times	\times	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc
283	Brake operation time at stop	$5 B$	$D B$	2	\times	\bigcirc	\bigcirc	\times	\times	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc
284	Deceleration detection function selection	5 C	DC	2	\bigcirc	\bigcirc	\bigcirc	\times	\times	\times	\times	\bigcirc	O	\bigcirc
285	Overspeed detection frequency (Speed deviation excess detection frequency)	5D	$D D$	2	\bigcirc	\bigcirc	\bigcirc	\times	\times	\bigcirc	\times	\bigcirc	O	\bigcirc
286	Droop gain	5E	$D E$	2	\times	\bigcirc	\bigcirc	\times	\times	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc
287	Droop filter time constant	5F	DF	2	\times	\bigcirc	\bigcirc	\times	\times	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc
288	Droop function activation selection	60	EO	2	\times	\times	\bigcirc	\times	\times	\bigcirc	\times	\bigcirc	O	\bigcirc
291	Pulse train I/O selection	63	E3	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc
292	Automatic acceleration/ deceleration	64	E4	2	\bigcirc	\bigcirc	\bigcirc	\times	\times	\bigcirc	\times	\bigcirc	O	\bigcirc

Param eter	Name	Instruction Code * 1			Control Mode-based Correspondence Table *2							ε_{*} Кdoう ләəәшеле		
		$\begin{aligned} & \text { ס} \\ & \text { ס } \\ & \text { 区 } \end{aligned}$	$\stackrel{N}{4}$		V/F Control	Advanced magnetic flux vector control	Vector control			Real sensorless vector control				
							Speed control	Torque control	Position control	$\begin{aligned} & \text { 웅 } \\ & \text { o } \\ & \text { in } \\ & \text { क } \end{aligned}$	$\begin{aligned} & \text { 은 } \\ & \text { 흘 } \\ & \text { 응 } \end{aligned}$			
293	Acceleration/deceleration time individual calculation selection	65	E5	2	\bigcirc	\bigcirc	\bigcirc	\times	\times	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc
294	UV avoidance voltage gain	66	E6	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
296	Password lock level	68	E8	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc
297	Password lock/unlock	69	E9	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O*5	\bigcirc
299	Rotation direction detection selection at restarting	$6 B$	$E B$	2	\bigcirc	\bigcirc	\times	\times	\times	\bigcirc	\times	O	\bigcirc	\bigcirc
300	BCD input bias AX	00	80	3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
301	$B C D$ input gain $A X$	01	81	3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
302	BIN input bias AX	02	82	3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
303	BIN input gain AX	03	83	3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
304	Digital input and analog input compensation enable/ disable selection AX	04	84	3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	O	\bigcirc	\bigcirc
305	Read timing operation selection AX	05	85	3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
306	Analog output signal selection AY	06	86	3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
307	Setting for zero analog output AY	07	87	3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
308	Setting for maximum analog output AY	08	88	3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	O	\bigcirc
309	Analog output signal voltage/current switchover AY	09	89	3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
310	Analog meter voltage output selection AY	OA	$8 A$	3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc	\bigcirc
311	Setting for zero analog meter voltage output AY	OB	8B	3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
312	Setting for maximum analog meter voltage output AY	OC	8C	3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	O	\bigcirc
313	DO0 output selection AY	OD	8D	3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	O	\bigcirc
314	DO1 output selection AY	OE	8E	3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
315	DO2 output selection AY NC	OF	8F	3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	O	\bigcirc
316	DO3 output selection AY	10	90	3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
317	DO4 output selection AY	11	91	3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
318	DO5 output selection AY	12	92	3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
319	DO6 output selection AY	13	93	3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
320	RA1 output selection AR	14	94	3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
321	RA2 output selection AR	15	95	3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
322	RA3 output selection AR	16	96	3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
323	AM0 OV adjustment AY	17	97	3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc
324	AM1 0mA adjustment $\overline{\text { AY }}$	18	98	3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc
329	Digital input increments selection AX	1D	9 D	3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc
331	RS-485 communication station	1F	9F	3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	O*6	$\mathrm{O}^{*} 6$

Param eter	Name	Instruction Code * 1			Control Mode-based Correspondence Table *2								Parameter Clear *3	
		$\begin{aligned} & \text { ס } \\ & \text { 历 } \\ & \text { 区 } \end{aligned}$	$\stackrel{N}{3}$	$\begin{aligned} & \text { ס } \\ & \frac{0}{0} \\ & \frac{1}{0} \\ & \mathbf{0} \\ & \underset{\sim}{x} \end{aligned}$	V/F Control	Advanced magnetic flux vector control	Vector control			Real sensorless vector control				
							Speed control	Torque control	Position control	$\begin{aligned} & \text { 을 } \\ & \text { D } \\ & \text { © } \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \text { 은 } \\ & \text { 흔 } \\ & \text { 잉 } \end{aligned}$			
332	RS-485 communication speed	20	AO	3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	O*	O*6
333	RS-485 communication stop bit length	21	A1	3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	O*	O*
334	RS-485 communication parity check selection	22	A2	3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O*	O*
335	RS-485 communication retry count	23	A3	3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O*	O*
336	RS-485 communication check time interval	24	A4	3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O*	O*
337	RS-485 communication waiting time setting	25	A5	3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O*	O*
338	Communication operation command source	26	A6	3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	O*	O*
339	Communication speed command source	27	A7	3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	O*	O*
340	Communication startup mode selection	28	A8	3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	O*	O*6
341	RS-485 communication CR/ LF selection	29	A9	3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O*	O*
342	Communication EEPROM write selection	2 A	$A A$	3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
343	Communication error count	$2 B$	$A B$	3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\times	\times
345	DeviceNet address ND	2D	$A D$	3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	$\mathrm{O}^{*} 6$	$\mathrm{O}^{*} 6$
346	DeviceNet baud rate ND	$2 E$	$A E$	3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O^{*}	$\bigcirc{ }^{*} 6$
349	Communication reset selection NC ND NL NP	31	B1	3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	O*	O*
350	Stop position command selection AP AL	32	B2	3	\bigcirc	\bigcirc	\bigcirc	\times	\times	\times	\times	O	\bigcirc	\bigcirc
351	Orientation speed AP AL	33	B3	3	\bigcirc	\bigcirc	\bigcirc	\times	\times	\times	\times	\bigcirc	\bigcirc	\bigcirc
352	Creep speed AP AL	34	B4	3	\bigcirc	\bigcirc	\bigcirc	\times	\times	\times	\times	\bigcirc	\bigcirc	\bigcirc
353	Creep switchover position $\mathrm{AP} \mathrm{AL}$	35	B5	3	\bigcirc	\bigcirc	\bigcirc	\times	\times	\times	\times	O	\bigcirc	\bigcirc
354	Position loop switchover position AP AL	36	B6	3	\bigcirc	\bigcirc	\bigcirc	\times	\times	\times	\times	O	\bigcirc	\bigcirc
355	DC injection brake start position AP AL	37	B7	3	\bigcirc	\bigcirc	\bigcirc	\times	\times	\times	\times	O	\bigcirc	\bigcirc
356	Internal stop position command AP AL	38	B8	3	\bigcirc	\bigcirc	\bigcirc	\times	\times	\times	\times	O	\bigcirc	\bigcirc
357	Orientation in-position zone AP AL	39	B9	3	\bigcirc	\bigcirc	\bigcirc	\times	\times	\times	\times	O	\bigcirc	\bigcirc
358	Servo torque selection AP AL	$3 A$	$B A$	3	\bigcirc	\bigcirc	\bigcirc	\times	\times	\times	\times	O	\bigcirc	\bigcirc
359	Encoder rotation direction $\mathrm{AP} \mathrm{AL}$	$3 B$	BB	3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\times	O	\bigcirc	\bigcirc
360	16 bit data selection AP AL	$3 C$	$B C$	3	\bigcirc	\bigcirc	\bigcirc	\times	\times	\times	\times	\bigcirc	\bigcirc	\bigcirc
361	Position shift AP AL	3D	$B D$	3	\bigcirc	\bigcirc	\bigcirc	\times	\times	\times	\times	\bigcirc	\bigcirc	\bigcirc
362	Orientation position loop gain AP AL	3E	BE	3	\bigcirc	\bigcirc	\bigcirc	\times	\times	\times	\times	O	\bigcirc	\bigcirc
363	Completion signal output delay time AP AL	$3 F$	BF	3	\bigcirc	\bigcirc	\bigcirc	\times	\times	\times	\times	O	\bigcirc	\bigcirc
364	Encoder stop check time	40	CO	3	\bigcirc	\bigcirc	\bigcirc	\times	\times	\times	\times	O	\bigcirc	\bigcirc
365	Orientation limit AP AL	41	C1	3	\bigcirc	\bigcirc	\bigcirc	\times	\times	\times	\times	\bigcirc	\bigcirc	\bigcirc

Param eter	Name	Instruction Code *1			Control Mode-based Correspondence Table *2									
		$\begin{aligned} & \text { ס్ఞ } \\ & \text { 区 } \end{aligned}$	$\underset{~=~}{4}$	$\begin{aligned} & \text { D } \\ & \text { d } \\ & \text { C } \\ & \text { © } \\ & \text { X } \end{aligned}$	V/F Control	Advanced magnetic flux vector control	Vector control			Real sensorless vector control				
							Speed control	Torque control	Position control		$$			
366	Recheck time AP AL	42	C2	3	\bigcirc	\bigcirc	\bigcirc	\times	\times	\times	\times	\bigcirc	\bigcirc	\bigcirc
367	Speed feedback range $\overline{\text { AP }}$ AL	43	C3	3	\bigcirc	\bigcirc	\bigcirc	\times	\times	\times	\times	\bigcirc	O	O
368	Feedback gain AP AL	44	C4	3	\bigcirc	\bigcirc	\times	\times	\times	\times	\times	\bigcirc	O	\bigcirc
369	Number of encoder pulses $\mathrm{AP} \mathrm{AL}$	45	C5	3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\times	\bigcirc	O	\bigcirc
374	Overspeed detection level	4A	$C A$	3	\times	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	O	\bigcirc
376	Encoder signal loss detection enable/disable selection AP AL	4 C	CC	3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\times	\bigcirc	O	\bigcirc
379	SSCNET III rotation direction selection NS	4F	CF	3	\times	\times	\bigcirc	\bigcirc	\bigcirc	\times	\times	O	O	\bigcirc
380	Acceleration S-pattern 1	50	DO	3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
381	Deceleration S-pattern 1	51	D1	3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
382	Acceleration S-pattern 2	52	D2	3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
383	Deceleration S-pattern 2	53	D3	3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
384	Input pulse division scaling factor	54	D4	3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc
385	Frequency for 0 input pulse	55	D5	3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
386	Frequency for maximum input pulse	56	D6	3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc
387	Initial communication delay time NL	57	D7	3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc	\bigcirc
388	Send time interval at heart beat NL	58	D8	3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	O	\bigcirc
389	Minimum sending time at heart beat NL	59	D9	3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc
390	\% setting reference frequency NL	$5 A$	DA	3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc
391	Receive time interval at heart beat NL	5B	$D B$	3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	O	\bigcirc
392	Event driven detection width NL	5 C	DC	3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	O	\bigcirc
393	Orientation selection AP AL	5D	$D D$	3	\times	\times	\bigcirc	\times	\times	\times	\times	\bigcirc	\bigcirc	\bigcirc
396	Orientation speed gain (P term) AP AL	60	EO	3	\times	\times	\bigcirc	\times	\times	\times	\times	O	O	\bigcirc
397	Orientation speed integral time AP AL	61	E1	3	\times	\times	\bigcirc	\times	\times	\times	\times	\bigcirc	O	\bigcirc
398	Orientation speed gain (D term) AP AL	62	E2	3	\times	\times	\bigcirc	\times	\times	\times	\times	\bigcirc	O	\bigcirc
399	Orientation deceleration ratio AP AL	63	E3	3	\times	\times	\bigcirc	\times	\times	\times	\times	\bigcirc	\bigcirc	\bigcirc
406	High resolution analog input selection AZ	06	86	4	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\times	\bigcirc
407	Motor temperature detection filter AZ	07	87	4	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc	\bigcirc
408	Motor thermistor selection AZ	08	88	4	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
413	Encoder pulse division ratio AL	OD	8D	4	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	O	\bigcirc
419	Position command source selection AP AL	13	93	4	\times	\times	\times	\times	\bigcirc	\times	\times	O	O	\bigcirc

Param eter	Name	Instruction Code * 1			Control Mode-based Correspondence Table *2									
		$$	$\stackrel{N}{3}$		V/F Control	Advanced magnetic flux vector control	Vector control			Real sensorless vector control				
							Speed control	Torque control	Position control		$\begin{aligned} & \text { 은 } \\ & \text { 흥 힝 } \end{aligned}$			
420	Command pulse scaling factor numerator AP AL	14	94	4	\times	\times	\times	\times	\bigcirc	\times	\times	O	O	\bigcirc
421	Command pulse scaling factor denominator AP AL	15	95	4	\times	\times	\times	\times	\bigcirc	\times	\times	O	O	\bigcirc
422	Position loop gain AP AL	16	96	4	\times	\times	\times	\times	\bigcirc	\times	\times	O	O	\bigcirc
423	Position feed forward gain AL	17	97	4	\times	\times	\times	\times	\bigcirc	\times	\times	O	O	\bigcirc
424	Position command acceleration/deceleration time constant AP AL	18	98	4	\times	\times	\times	\times	\bigcirc	\times	\times	O	\bigcirc	O
425	Position feed forward command filter AP AL	19	99	4	\times	\times	\times	\times	\bigcirc	\times	\times	O	O	O
426	In-position width AP AL	1 A	9 A	4	\times	\times	\times	\times	\bigcirc	\times	\times	\bigcirc	\bigcirc	\bigcirc
427	Excessive level error AP AL	$1 B$	$9 B$	4	\times	\times	\times	\times	\bigcirc	\times	\times	\bigcirc	\bigcirc	\bigcirc
428	Command pulse selection $\mathrm{AP} \mathrm{AL}$	1 C	9 C	4	\times	\times	\times	\times	\bigcirc	\times	\times	O	O	\bigcirc
429	Clear signal selection AP AL	1D	9D	4	\times	\times	\times	\times	\bigcirc	\times	\times	\bigcirc	O	\bigcirc
430	Pulse monitor selection AP AL	$1 E$	$9 E$	4	\times	\times	\times	\times	\bigcirc	\times	\times	\bigcirc	\bigcirc	\bigcirc
432	Pulse train torque command bias AL	20	AO	4	\times	\times	\times	\bigcirc	\times	\times	\bigcirc	\bigcirc	O	\bigcirc
433	Pulse train torque command gain AL	21	A1	4	\times	\times	\times	\bigcirc	\times	\times	\bigcirc	O	O	\bigcirc
447	Digital torque command bias AX	2F	AF	4	\times	\times	\times	\bigcirc	\times	\times	\bigcirc	O	O	\bigcirc
448	Digital torque command gain AX	30	B0	4	\times	\times	\times	\bigcirc	\times	\times	\bigcirc	O	O	O
449	SSCNET III input filter setting NS	31	B1	4	\times	\times	\bigcirc	\bigcirc	\bigcirc	\times	\times	O	O	\bigcirc
450	Second applied motor	32	B2	4	\bigcirc	\bigcirc	\times	\times	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
451	Second motor control method selection	33	B3	4	\bigcirc	\bigcirc	\times	\times	\times	\bigcirc	\bigcirc	O	O	\bigcirc
453	Second motor capacity	35	B5	4	\times	\bigcirc	\times	\times	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
454	Number of second motor poles	36	B6	4	\times	\bigcirc	\times	\times	\times	\bigcirc	\bigcirc	O	O	O
455	Second motor excitation current	37	B7	4	\times	\bigcirc	\times	\times	\times	\bigcirc	\bigcirc	O	\times	\bigcirc
456	Rated second motor voltage	38	B8	4	\times	\bigcirc	\times	\times	\times	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc
457	Rated second motor frequency	39	B9	4	\times	\bigcirc	\times	\times	\times	\bigcirc	\bigcirc	O	O	\bigcirc
458	Second motor constant (R1)	$3 A$	$B A$	4	\times	\bigcirc	\times	\times	\times	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc
459	Second motor constant (R2)	$3 B$	BB	4	\times	\bigcirc	\times	\times	\times	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc
460	Second motor constant (L1)	$3 C$	$B C$	4	\times	\bigcirc	\times	\times	\times	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc
461	Second motor constant (L2)	3D	$B D$	4	\times	\bigcirc	\times	\times	\times	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc
462	Second motor constant (X)	$3 E$	BE	4	\times	\bigcirc	\times	\times	\times	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc
463	Second motor auto tuning setting/status	$3 F$	BF	4	\times	\bigcirc	\times	\times	\times	\bigcirc	\bigcirc	O	\times	\bigcirc
464	Digital position control sudden stop deceleration time AP AL	40	C0	4	\times	\times	\times	\times	\bigcirc	\times	\times	O	\bigcirc	O
465	First position feed amount lower 4 digits AP AL	41	C1	4	\times	\times	\times	\times	\bigcirc	\times	\times	O	O	O
466	First position feed amount upper 4 digits AP AL	42	C2	4	\times	\times	\times	\times	\bigcirc	\times	\times	O	O	\bigcirc

Param eter	Name	Instruction Code *1			Control Mode-based Correspondence Table *2							ε_{*} Кdoう ләəəшелед		All Parameter Clear *3
			$\stackrel{N}{2}$		V/F Control	Advanced magnetic flux vector control	Vector control			Real sensorless vector control				
							Speed control	Torque control	Position control	을 o के 0	$\begin{aligned} & \text { 은 } \\ & \text { 흥 } \\ & \text { 응 } \end{aligned}$			
467	Second position feed amount lower 4 digits AP AL	43	C3	4	\times	\times	\times	\times	\bigcirc	\times	\times	O	O	\bigcirc
468	Second position feed amount upper 4 digits AP AL	44	C4	4	\times	\times	\times	\times	\bigcirc	\times	\times	\bigcirc	O	\bigcirc
469	Third position feed amount lower 4 digits AP AL	45	C5	4	\times	\times	\times	\times	\bigcirc	\times	\times	O	O	\bigcirc
470	Third position feed amount upper 4 digits AP AL	46	C6	4	\times	\times	\times	\times	\bigcirc	\times	\times	\bigcirc	O	O
471	Fourth position feed amount lower 4 digits AP AL	47	C7	4	\times	\times	\times	\times	\bigcirc	\times	\times	O	O	\bigcirc
472	Fourth position feed amount upper 4 digits AP AL	48	C8	4	\times	\times	\times	\times	\bigcirc	\times	\times	\bigcirc	O	O
473	Fifth position feed amount lower 4 digits $A P$ AL	49	C9	4	\times	\times	\times	\times	\bigcirc	\times	\times	\bigcirc	O	\bigcirc
474	Fifth position feed amount upper 4 digits AP AL	4 A	CA	4	\times	\times	\times	\times	\bigcirc	\times	\times	\bigcirc	O	\bigcirc
475	Sixth position feed amount lower 4 digits AP AL	$4 B$	CB	4	\times	\times	\times	\times	\bigcirc	\times	\times	O	O	O
476	Sixth position feed amount upper 4 digits AP AL	4C	CC	4	\times	\times	\times	\times	\bigcirc	\times	\times	\bigcirc	O	\bigcirc
477	Seventh position feed amount lower 4 digits AP AL	4 D	$C D$	4	\times	\times	\times	\times	\bigcirc	\times	\times	\bigcirc	O	O
478	Seventh position feed amount upper 4 digits AP AL	4E	CE	4	\times	\times	\times	\times	\bigcirc	\times	\times	\bigcirc	O	\bigcirc
479	Eighth position feed amount lower 4 digits AP AL	4F	CF	4	\times	\times	\times	\times	\bigcirc	\times	\times	\bigcirc	O	\bigcirc
480	Eighth position feed amount upper 4 digits $\triangle \mathrm{AP}$ AL	50	D0	4	\times	\times	\times	\times	\bigcirc	\times	\times	\bigcirc	O	\bigcirc
481	Ninth position feed amount lower 4 digits AP AL	51	D1	4	\times	\times	\times	\times	\bigcirc	\times	\times	\bigcirc	O	\bigcirc
482	Ninth position feed amount upper 4 digits AP AL	52	D2	4	\times	\times	\times	\times	\bigcirc	\times	\times	\bigcirc	O	\bigcirc
483	Tenth position feed amount lower 4 digits AP AL	53	D3	4	\times	\times	\times	\times	\bigcirc	\times	\times	O	O	\bigcirc
484	Tenth position feed amount upper 4 digits AP AL	54	D4	4	\times	\times	\times	\times	\bigcirc	\times	\times	\bigcirc	O	\bigcirc
485	Eleventh position feed amount lower 4 digits AP AL	55	D5	4	\times	\times	\times	\times	\bigcirc	\times	\times	O	O	\bigcirc
486	Eleventh position feed amount upper 4 digits AP AL	56	D6	4	\times	\times	\times	\times	\bigcirc	\times	\times	\bigcirc	O	\bigcirc
487	Twelfth position feed amount lower 4 digits AP AL	57	D7	4	\times	\times	\times	\times	\bigcirc	\times	\times	\bigcirc	O	\bigcirc
488	Twelfth position feed amount upper 4 digits AP AL	58	D8	4	\times	\times	\times	\times	\bigcirc	\times	\times	\bigcirc	O	\bigcirc
489	Thirteenth position feed amount lower 4 digits AP AL	59	D9	4	\times	\times	\times	\times	\bigcirc	\times	\times	O	O	O
490	Thirteenth position feed amount upper 4 digits AP AL	$5 A$	DA	4	\times	\times	\times	\times	\bigcirc	\times	\times	O	O	\bigcirc
491	Fourteenth position feed amount lower 4 digits AP AL	5B	$D B$	4	\times	\times	\times	\times	\bigcirc	\times	\times	O	O	\bigcirc
492	Fourteenth position feed amount upper 4 digits AP AL	5 C	DC	4	\times	\times	\times	\times	\bigcirc	\times	\times	O	O	\bigcirc

Param eter	Name	Instruction Code * 1			Control Mode-based Correspondence Table *2								ع* леәノ дәңәшеле	
			$\stackrel{N}{3}$		V/F Control	Advanced magnetic flux vector control	Vector control			Real sensorless vector control				
							Speed control	Torque control	Position control	$\begin{aligned} & \text { סO } \\ & \text { O } \\ & \text { Din } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { O O } \\ & \text { 흘 } \\ & \text { 응 } \end{aligned}$			
493	Fifteenth position feed amount lower 4 digits AP AL	5D	DD	4	\times	\times	\times	\times	\bigcirc	\times	\times	\bigcirc	\bigcirc	\bigcirc
494	Fifteenth position feed amount upper 4 digits AP AL	$5 E$	$D E$	4	\times	\times	\times	\times	\bigcirc	\times	\times	O	\bigcirc	\bigcirc
495	Remote output selection	$5 F$	DF	4	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
496	Remote output data 1	60	EO	4	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\times	\times
497	Remote output data 2	61	E1	4	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\times	\times
499	SSCNET III operation selection NS	63	E3	4	\times	\times	\bigcirc	\bigcirc	\bigcirc	\times	\times	\bigcirc	\bigcirc	\bigcirc
500	Communication error execution waiting time	00	80	5	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
501	Communication error occurrence count display	01	81	5	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc
502	Stop mode selection at communication error $\mathrm{NC} N \mathrm{NL} N \mathrm{NP}$	02	82	5	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
503	Maintenance timer	03	83	5	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\times	\times
504	Maintenance timer alarm output set time	04	84	5	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc
505	Speed setting reference	05	85	5	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
516	S-pattern time at a start of acceleration	10	90	5	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
517	S-pattern time at a completion of acceleration	11	91	5	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
518	S-pattern time at a start of deceleration	12	92	5	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	O	\bigcirc	\bigcirc
519	S-pattern time at a completion of deceleration	13	93	5	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
539	Modbus-RTU communication check time interval	27	A7	5	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O*	O*
541	Frequency command sign selection (CC-Link) NC	29	A9	5	\bigcirc	\bigcirc	\bigcirc	\times	\times	\bigcirc	\times	\bigcirc	O*	O*
542	Communication station number (CC-Link) NC	2 A	AA	5	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	O*	O*
543	Baud rate (CC-Link) NC	$2 B$	$A B$	5	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O*	O^{*}
544	CC-Link extended setting NC	2 C	$A C$	5	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O*	O*
547	USB communication station number	$2 F$	AF	5	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O*	O*
548	USB communication check time interval	30	B0	5	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	O*	O*
549	Protocol selection	31	B1	5	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O*6	$\mathrm{O}^{*} 6$
550	NET mode operation command source selection	32	B2	5	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O*	O*
551	PU mode operation command source selection	33	B3	5	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O*	O*
555	Current average time	37	B7	5	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
556	Data output mask time	38	B8	5	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
557	Current average value monitor signal output reference current	39	B9	5	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

Param eter	Name	Instruction Code * 1			Control Mode-based Correspondence Table *2							ع* Кdoう ләəəuеле		
		$\begin{aligned} & \text { ס } \\ & \text { ס } \\ & \text { 区 } \end{aligned}$	$\stackrel{\text { N }}{5}$		V/F Control	Advanced magnetic flux vector control	Vector control			Real sensorless vector control				
							Speed control	Torque control	Position control					
563	Energization time carryingover times	$3 F$	BF	5	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\times	\times
564	Operating time carryingover times	40	CO	5	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\times	\times
569	Second motor speed control gain	45	C5	5	\times	\bigcirc	\times	\times	\times	\times	\times	\bigcirc	\times	\bigcirc
571	Holding time at a start	47	C7	5	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
574	Second motor online auto tuning	4A	CA	5	\times	\bigcirc	\times	\times	\times	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc
575	Output interruption detection time	4B	CB	5	\bigcirc	\bigcirc	\bigcirc	\times	\times	\bigcirc	\times	\bigcirc	O	\bigcirc
576	Output interruption detection level	4C	CC	5	\bigcirc	\bigcirc	\bigcirc	\times	\times	\bigcirc	\times	\bigcirc	O	\bigcirc
577	Output interruption cancel level	$4 D$	$C D$	5	\bigcirc	\bigcirc	\bigcirc	\times	\times	\bigcirc	\times	\bigcirc	O	\bigcirc
611	Acceleration time at a restart	OB	$8 B$	6	\bigcirc	\bigcirc	\bigcirc	\times	\times	\bigcirc	\times	\bigcirc	O	\bigcirc
665	Regeneration avoidance frequency gain	41	C1	6	\bigcirc	\bigcirc	\bigcirc	\times	\times	\bigcirc	\times	\bigcirc	O	\bigcirc
684	Tuning data increments switchover	54	D4	6	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc
800	Control method selection	00	80	8	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
802	Pre-excitation selection AP AL	02	82	8	\times	\times	\bigcirc	\times	\times	\times	\times	\bigcirc	\bigcirc	\bigcirc
803	Constant power range torque characteristic selection	03	83	8	\times	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc
804	Torque command source selection	04	84	8	\times	\times	\times	\bigcirc	\times	\times	\bigcirc	\bigcirc	O	\bigcirc
805	Torque command value (RAM)	05	85	8	\times	\times	\times	\bigcirc	\times	\times	\bigcirc	\times	O	\bigcirc
806	Torque command value (RAM,EEPROM)	06	86	8	\times	\times	\times	\bigcirc	\times	\times	\bigcirc	\bigcirc	O	\bigcirc
807	Speed limit selection	07	87	8	\times	\times	\times	\bigcirc	\times	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc
808	Forward rotation speed limit	08	88	8	\times	\times	\times	\bigcirc	\times	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc
809	Reverse rotation speed limit	09	89	8	\times	\times	\times	\bigcirc	\times	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc
810	Torque limit input method selection	OA	8A	8	\times	\times	\bigcirc	\times	\bigcirc	\bigcirc	\times	\bigcirc	O	\bigcirc
811	Set resolution switchover	OB	8B	8	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
812	Torque limit level (regeneration)	OC	8C	8	\times	\times	\bigcirc	\times	\bigcirc	\bigcirc	\times	\bigcirc	O	\bigcirc
813	Torque limit level (3rd quadrant)	OD	$8 D$	8	\times	\times	\bigcirc	\times	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc
814	Torque limit level (4th quadrant)	OE	8E	8	\times	\times	\bigcirc	\times	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc
815	Torque limit level 2	OF	8F	8	\times	\times	\bigcirc	\times	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc
816	Torque limit level during acceleration	10	90	8	\times	\times	\bigcirc	\times	\bigcirc	\bigcirc	\times	\bigcirc	O	\bigcirc
817	Torque limit level during deceleration	11	91	8	\times	\times	\bigcirc	\times	\bigcirc	\bigcirc	\times	\bigcirc	O	\bigcirc
818	Easy gain tuning response level setting	12	92	8	\times	\times	\bigcirc	\times	\bigcirc	\bigcirc	\times	\bigcirc	O	\bigcirc
819	Easy gain tuning selection	13	93	8	\times	\times	\bigcirc	\times	\bigcirc	\bigcirc	\times	\bigcirc	\times	\bigcirc
820	Speed control P gain 1	14	94	8	\times	\times	\bigcirc	\times	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc
821	Speed control integral time 1	15	95	8	\times	\times	\bigcirc	\times	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc
822	Speed setting filter 1	16	96	8	\times	\times	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
823	Speed detection filter 1 AP AL	17	97	8	\times	\times	\bigcirc	\bigcirc	\bigcirc	\times	\times	\bigcirc	\bigcirc	\bigcirc
824	Torque control P gain 1	18	98	8	\times	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

Param eter	Name	Instruction Code * 1			Control Mode-based Correspondence Table *2							Parameter Copy *3		All Parameter Clear *3
			$\stackrel{N}{4}$		V/F Control	Advanced magnetic flux vector control	Vector control			Real sensorless vector control				
							Speed control	Torque control	Position control	$\begin{aligned} & \text { 응 } \\ & \text { 은 } \\ & \dot{\infty} \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \text { O } \\ & \text { 흔 } \\ & \text { 응 } \\ & \hline 0 \end{aligned}$			
825	Torque control integral time 1	19	99	8	\times	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
826	Torque setting filter 1	1A	$9 A$	8	\times	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
827	Torque detection filter 1	$1 B$	$9 B$	8	\times	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
828	Model speed control gain	1 C	9 C	8	\times	\times	\bigcirc	\times	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc
829	Number of machine end encoder pulses AL	1D	9D	8	\bigcirc	\bigcirc	\bigcirc	\times	\times	\times	\times	O	O	\bigcirc
830	Speed control P gain 2	1E	$9 E$	8	\times	\times	\bigcirc	\times	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc
831	Speed control integral time 2	1F	$9 F$	8	\times	\times	\bigcirc	\times	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc
832	Speed setting filter2	20	AO	8	\times	\times	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
833	Speed detection filter 2 AP AL	21	A1	8	\times	\times	\bigcirc	\times	\bigcirc	\times	\times	\bigcirc	\bigcirc	\bigcirc
834	Torque control P gain 2	22	A2	8	\times	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
835	Torque control integral time 2	23	A3	8	\times	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
836	Torque setting filter2	24	A4	8	\times	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
837	Torque detection filter 2	25	A5	8	\times	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
838	DA1 terminal function selection AZ	26	A6	8	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc
839	DA1 output filter AZ	27	A7	8	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
840	Torque bias selection AP AL	28	A8	8	\times	\times	\bigcirc	\times	\times	\times	\times	\bigcirc	\bigcirc	\bigcirc
841	Torque bias $1 \times \mathrm{AP}$ AL	29	A9	8	\times	\times	\bigcirc	\times	\times	\times	\times	\bigcirc	\bigcirc	\bigcirc
842	Torque bias 2 AP AL	$2 A$	$A A$	8	\times	\times	\bigcirc	\times	\times	\times	\times	\bigcirc	\bigcirc	\bigcirc
843	Torque bias 3 AP AL	$2 B$	$A B$	8	\times	\times	\bigcirc	\times	\times	\times	\times	\bigcirc	\bigcirc	\bigcirc
844	Torque bias filter AP AL	2 C	$A C$	8	\times	\times	\bigcirc	\times	\times	\times	\times	\bigcirc	\bigcirc	\bigcirc
845	Torque bias operation time AP AL	$2 D$	$A D$	8	\times	\times	\bigcirc	\times	\times	\times	\times	\bigcirc	O	\bigcirc
846	Torque bias balance compensation AP AL	$2 E$	$A E$	8	\times	\times	\bigcirc	\times	\times	\times	\times	\bigcirc	O	\bigcirc
847	Fall-time torque bias terminal 1 bias AP AL	$2 F$	AF	8	\times	\times	\bigcirc	\times	\times	\times	\times	O	O	\bigcirc
848	Fall-time torque bias terminal 1 gain AP AL	30	B0	8	\times	\times	\bigcirc	\times	\times	\times	\times	\bigcirc	O	\bigcirc
849	Analog input off set adjustment	31	B1	8	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	O	\bigcirc
850	Control operation selection	32	B2	8	\times	\times	\times	\times	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
853	Speed deviation time AP AL	35	B5	8	\times	\times	\bigcirc	\times	\times	\times	\times	\bigcirc	\bigcirc	\bigcirc
854	Excitation ratio	36	B6	8	\times	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
857	DA1-0V adjustment AZ	39	B9	8	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc
858	Terminal 4 function assignment	$3 A$	$B A$	8	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc
859	Torque current	3B	BB	8	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc
860	Second motor torque current	$3 C$	$B C$	8	\times	\bigcirc	\times	\times	\times	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc
862	Notch filter time constant	3E	BE	8	\times	\times	\bigcirc	\times	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc
863	Notch filter depth	3F	BF	8	\times	\times	\bigcirc	\times	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc
864	Torque detection	40	CO	8	\times	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
865	Low speed detection	41	C1	8	\times	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
866	Torque monitoring reference	42	C2	8	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
867	AM output filter	43	C3	8	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
868	Terminal 1 function assignment	44	C4	8	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc
872	Input phase failure protection selection	48	C8	8	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc
873	Speed limit AP AL	49	C9	8	\times	\times	\bigcirc	\times	\times	\times	\times	\bigcirc	\bigcirc	\bigcirc

Param eter	Name	Instruction Code*1			Control Mode-based Correspondence Table *2									
		$\begin{aligned} & \text { ס్ఞ } \\ & \text { 区 } \end{aligned}$			V/F Control	Advanced magnetic flux vector control	Vector control			Real sensorless vector control				
							Speed control	Torque control	Position control		$\begin{aligned} & \text { O O } \\ & \text { 흔 } \\ & \text { ㅇ } \end{aligned}$			
874	OLT level setting	4A	$C A$	8	\times	\times	\bigcirc	\times	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc
875	Fault definition	$4 B$	CB	8	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
877	Speed feed forward control/ model adaptive speed control selection	$4 D$	$C D$	8	\times	\times	\bigcirc	\times	\bigcirc	\bigcirc	\times	O	O	\bigcirc
878	Speed feed forward filter	$4 E$	CE	8	\times	\times	\bigcirc	\times	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc
879	Speed feed forward torque limit	4F	CF	8	\times	\times	\bigcirc	\times	\bigcirc	\bigcirc	\times	O	O	\bigcirc
880	Load inertia ratio	50	D0	8	\times	\times	\bigcirc	\times	\bigcirc	\bigcirc	\times	\bigcirc	\times	\bigcirc
881	Speed feed forward gain	51	D1	8	\times	\times	\bigcirc	\times	\bigcirc	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc
882	Regeneration avoidance operation selection	52	D2	8	\bigcirc	\bigcirc	\bigcirc	\times	\times	\bigcirc	\times	O	O	\bigcirc
883	Regeneration avoidance operation level	53	D3	8	\bigcirc	\bigcirc	\bigcirc	\times	\times	\bigcirc	\times	\bigcirc	O	\bigcirc
884	Regeneration avoidance at deceleration detection sensitivity	54	D4	8	\bigcirc	\bigcirc	\bigcirc	\times	\times	\bigcirc	\times	O	O	\bigcirc
885	Regeneration avoidance compensation frequency limit value	55	D5	8	\bigcirc	\bigcirc	\bigcirc	\times	\times	\bigcirc	\times	O	O	\bigcirc
886	Regeneration avoidance voltage gain	56	D6	8	\bigcirc	\bigcirc	\bigcirc	\times	\times	\bigcirc	\times	O	O	\bigcirc
888	Free parameter 1	58	D8	8	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\times
889	Free parameter 2	59	D9	8	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\times
891	Cumulative power monitor digit shifted times	5B	$D B$	8	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	O	\bigcirc
892	Load factor	5 C	$D C$	8	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
893	Energy saving monitor reference (motor capacity)	5D	DD	8	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	O	\bigcirc
894	Control selection during commercial power supply operation	5E	$D E$	8	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	O	\bigcirc
895	Power saving rate reference value	$5 F$	DF	8	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	O	\bigcirc
896	Power unit cost	60	EO	8	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
897	Power saving monitor average time	61	E1	8	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	O	\bigcirc
898	Power saving cumulative monitor clear	62	E2	8	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc
899	Operation time rate (estimated value)	63	E3	8	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	O	\bigcirc
$\begin{gathered} \text { C0 } \\ (900) \end{gathered}$	FM terminal calibration	5 C	$D C$	1	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\times	\bigcirc
$\begin{gathered} \text { C1 } \\ (901) \end{gathered}$	AM terminal calibration	5D	$D D$	1	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\times	\bigcirc
$\begin{gathered} \text { C2 } \\ (902) \end{gathered}$	Terminal 2 frequency setting bias frequency	5E	$D E$	1	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\times	\bigcirc
$\begin{gathered} \text { C3 } \\ (902) \end{gathered}$	Terminal 2 frequency setting bias	5E	$D E$	1	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\times	\bigcirc
$\begin{gathered} 125 \\ (903) \end{gathered}$	Terminal 2 frequency setting gain frequency	5F	DF	1	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\times	\bigcirc
$\begin{gathered} \hline \text { C4 } \\ (903) \\ \hline \end{gathered}$	Terminal 2 frequency setting gain	5F	DF	1	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\times	\bigcirc
$\begin{gathered} \text { C5 } \\ (904) \end{gathered}$	Terminal 4 frequency setting bias frequency	60	EO	1	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\times	\bigcirc

Param eter	Name	Instruction Code *1			Control Mode-based Correspondence Table *2							$\varepsilon_{*} \text { Кdoכ ләəəшexed }$	$\varepsilon_{*} \text { деәן дәәәше.ед }$	All Parameter Clear *3
		$\begin{aligned} & \text { ס} \\ & \text { O } \\ & \text { 区 } \end{aligned}$	$\stackrel{ \pm}{4}$		V/F Control	Advanced magnetic flux vector control	Vector control			Real sensorless vector control				
							Speed control	Torque control	Position control	$\begin{aligned} & \text { 을 } \\ & \text { O } \\ & \text { in } \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \text { 은 } \\ & \text { 흔 } \\ & \text { 응 } \end{aligned}$			
$\begin{gathered} \text { C6 } \\ (904) \end{gathered}$	Terminal 4 frequency setting bias	60	EO	1	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\times	\bigcirc
$\begin{gathered} 126 \\ (905) \\ \hline \end{gathered}$	Terminal 4 frequency setting gain frequency	61	E1	1	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\times	\bigcirc
$\begin{gathered} \text { C7 } \\ (905) \end{gathered}$	Terminal 4 frequency setting gain	61	E1	1	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\times	\bigcirc
$\begin{gathered} \text { C12 } \\ (917) \end{gathered}$	Terminal 1 bias frequency (speed)	11	91	9	\times	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\times	\bigcirc
$\begin{gathered} \text { C13 } \\ (917) \end{gathered}$	Terminal 1 bias frequency (speed)	11	91	9	\times	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\times	O
$\begin{gathered} \text { C14 } \\ (918) \end{gathered}$	Terminal 1 gain frequency (speed)	12	92	9	\times	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\times	\bigcirc
$\begin{gathered} \text { C15 } \\ (918) \\ \hline \end{gathered}$	Terminal 1 gain (speed)	12	92	9	\times	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\times	\bigcirc
$\begin{gathered} \hline \text { C16 } \\ \text { (919) } \end{gathered}$	Terminal 1 bias command (torque/magnetic flux)	13	93	9	\times	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\times	\bigcirc
$\begin{gathered} \text { C17 } \\ (919) \\ \hline \end{gathered}$	Terminal 1 bias (torque/ magnetic flux)	13	93	9	\times	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\times	\bigcirc
$\begin{gathered} \hline \text { C18 } \\ \text { (920) } \end{gathered}$	Terminal 1 gain command (torque/magnetic flux)	14	94	9	\times	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\times	\bigcirc
$\begin{gathered} \text { C19 } \\ (920) \\ \hline \end{gathered}$	Terminal 1 gain (torque/ magnetic flux)	14	94	9	\times	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\times	\bigcirc
$\begin{gathered} \text { C29 } \\ (925) \end{gathered}$	Motor temperature detection calibration (analog input) AZ	19	99	9	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\times	\bigcirc
$\begin{gathered} \text { C30 } \\ (926) \end{gathered}$	Terminal 6 bias frequency (speed) AZ	1A	$9 A$	9	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc
$\begin{gathered} \hline \text { C31 } \\ (926) \\ \hline \end{gathered}$	Terminal 6 bias (speed) AZ	1A	$9 A$	9	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\times	\bigcirc
$\begin{gathered} \text { C32 } \\ (927) \end{gathered}$	Terminal 6 gain frequency (speed) AZ	$1 B$	$9 B$	9	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\times	\bigcirc
$\begin{gathered} \text { C33 } \\ \text { (927) } \\ \hline \end{gathered}$	Terminal 6 gain (speed) AZ	$1 B$	$9 B$	9	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\times	\bigcirc
$\begin{gathered} \text { C34 } \\ (928) \end{gathered}$	Terminal 6 bias command (torque) AZ	1 C	9 C	9	\times	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\times	O
$\begin{gathered} \text { C35 } \\ (928) \\ \hline \end{gathered}$	Terminal 6 bias (torque) AZ	1 C	9 C	9	\times	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\times	\bigcirc
$\begin{gathered} \text { C36 } \\ (929) \end{gathered}$	Terminal 6 gain command (torque) AZ	1D	9 D	9	\times	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc
$\begin{gathered} \text { C37 } \\ \text { (929) } \\ \hline \end{gathered}$	Terminal 6 gain (torque) AZ	1D	9D	9	\times	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc
$\begin{gathered} \text { C38 } \\ (932) \\ \hline \end{gathered}$	Terminal 4 bias command (torque/magnetic flux)	20	AO	9	\times	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\times	\bigcirc
$\begin{gathered} \text { C39 } \\ (932) \\ \hline \end{gathered}$	Terminal 4 bias (torque/ magnetic flux)	20	AO	9	\times	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\times	\bigcirc
$\begin{gathered} \text { C40 } \\ (933) \end{gathered}$	Terminal 4 gain command (torque/magnetic flux)	21	A1	9	\times	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\times	\bigcirc
$\begin{gathered} \text { C41 } \\ (933) \end{gathered}$	Terminal 4 gain (torque/ magnetic flux)	21	A1	9	\times	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\times	\bigcirc
989	Parameter for manufacturer setting. Do not set.													
990	PU buzzer control	5 A	DA	9	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
991	PU contrast adjustment	$5 B$	$D B$	9	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\bigcirc

*The manual number is given on the bottom left of the back cover.

Print Date	*Manual Number	Revision
Aug. 2007	IB(NA)-0600331ENG-A	First edition
Apr. 2008	IB(NA)-0600331ENG-B	$\begin{aligned} & \text { Addition } \\ & \text { • FR-A721-18.5K to } 55 \mathrm{~K} \end{aligned}$
Apr. 2008	IB(NA)-0600331ENG-C	Addition . FR-A741-5.5K to 15 K
Jul. 2008	IB(NA)-0600331ENG-D	Addition - FR-A741-18.5K to 55 K
Dec. 2010	IB(NA)-0600331ENG-E	Addition - Setting values "65, 66" for Pr. 52 DU/PU main display data selection - Setting value "2" for Pr. 170 Watt-hour meter clear - Pr. 296 Password lock level - Pr. 297 Password lock/unlock - Setting value "2" for Pr. 850 Brake operation selection - Password locked (LOCD) - Compatibility with FR-A7AL Modification Appendix 2 Instructions for compliance with the EU Directives (400V class only) Option fault (E.OPT)

\. For Maximum Safety

- Mitsubishi inverters are not designed or manufactured to be used in equipment or systems in situations that can affect or endanger human life.
- When considering this product for operation in special applications such as machinery or systems used in passenger transportation, medical, aerospace, atomic power, electric power, or submarine repeating applications, please contact your nearest Mitsubishi sales representative.
- Although this product was manufactured under conditions of strict quality control, you are strongly advised to install safety devices to prevent serious accidents when it is used in facilities where breakdowns of the product are likely to cause a serious accident.
- Please do not use this product for loads other than three-phase induction motors.

FR-V500, A700, A701 Series Instruction Manual Supplement

When installing a thermal relay to the cooling fan of the vector-control dedicated motors (SFV5RU), use the following recommended thermal relay settings.
-200V class (Mitsubishi dedicated motor [SF-V5RU (1500r/min series)])

Motor type SF-V5RUDロK		1	2	3	5	7	11	15	18	22	30	37	45	55
Cooling fan (with thermal protector)*2*3	Voltage	Single-phase $200 \mathrm{~V} / 50 \mathrm{~Hz}$Single-phase 200 V to $230 \mathrm{~V} / 60 \mathrm{~Hz}$					Three-phase $200 \mathrm{~V} / 50 \mathrm{~Hz}$ Three-phase 200 to $230 \mathrm{~V} / 60 \mathrm{~Hz}$							
	Input *1	$\begin{gathered} 36 / 55 \mathrm{~W} \\ (0.26 / 0.32 \mathrm{~A}) \\ \hline \end{gathered}$			$\begin{gathered} 22 / 28 \mathrm{~W} \\ (0.11 / 0.13 \mathrm{~A}) \\ \hline \end{gathered}$		$\begin{gathered} 55 / 71 \mathrm{~W} \\ (0.37 / 0.39 \mathrm{~A}) \end{gathered}$				$\begin{gathered} 100 / 156 \mathrm{~W} \\ (0.47 / 0.53 \mathrm{~A}) \end{gathered}$			$\begin{gathered} 85 / 130 \mathrm{~W} \\ (0.46 / 0.52 \mathrm{~A}) \\ \hline \end{gathered}$
	Thermal relay settings	0.36A			0.18A		0.51A				0.69A			0.68A

- 400V class (Mitsubishi dedicated motor [SF-V5RUH (1500r/min series)])

Motor type SF-V5RUHDロK		1	2	3	5	7	11	15	18	22	30	37	45	55
Cooling fan (with thermal protector)*2*3	Voltage	Single-phase $200 \mathrm{~V} / 50 \mathrm{~Hz}$Single-phase 200 V to $230 \mathrm{~V} / 60 \mathrm{~Hz}$					Three-phase 380 to $400 \mathrm{~V} / 50 \mathrm{~Hz}$Three-phase 400 to $460 \mathrm{~V} / 60 \mathrm{~Hz}$							
	Input *1	$\begin{gathered} 36 / 55 \mathrm{~W} \\ (0.26 / 0.32 \mathrm{~A}) \\ \hline \end{gathered}$			$\begin{gathered} \hline 22 / 28 \mathrm{~W} \\ (0.11 / 0.13 \mathrm{~A}) \\ \hline \end{gathered}$		$\begin{gathered} \hline 55 / 71 \mathrm{~W} \\ (0.19 / 0.19 \mathrm{~A}) \\ \hline \end{gathered}$				$\begin{gathered} 100 / 156 \mathrm{~W} \\ (0.27 / 0.30 \mathrm{~A}) \\ \hline \end{gathered}$			$\begin{array}{\|c\|} \hline 85 / 130 \mathrm{~W} \\ (0.23 / 0.26 \mathrm{~A}) \\ \hline \end{array}$
	Thermal relay settings	0.36A			0.18A		0.25A				0.39A			0.34A

*1 Power (current) at $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$.
*2 The cooling fan is equipped with a thermal protector. The cooling fan stops when the coil temperature exceeds the specified value in order to protect the fan motor. A restrained cooling fan or degraded fan motor insulation may causes the rise in coil temperature. The fan motor re-starts when the coil temperature drops to normal.
*3 The voltage and input values are the standard specifications of the cooling fan in free air. When the cooling fan is used with a motor, it requires more energy to perform its work, and thus the above input values become slightly larger. The cooling fan can, however, be used as it is without causing problems. When a thermal relay is to be prepared at the customer's side, use the recommended thermal relay settings.

FR-A701 Series
 Instruction Manual Supplement

For the FR-A701 series manufactured in September 2013 or later, the following specifications are added. Check the serial number printed on the rating plate of the inverter. (For how to find the SERIAL number, refer to page 4.)

- Brake sequence function (Pr. 278 to Pr.285, Pr.292)

When the brake sequence mode 1 or $2(\operatorname{Pr} .292=" 17$ or 18 ") is selected, the brake sequence remains active even if the RT signal or X 9 signal is turned ON to select the second or third function.

Parameter Number	Name	Initial Value	Setting Range	Description	
278	Brake opening frequency	3 Hz	0 to 30Hz	Set to the rated slip frequency of the motor + about 1.0 Hz . This parameter may be only set if Pr. $278 \leq$ Pr. 282 .	
279	Brake opening current	130\%	0 to 220\%	Generally, set this parameter to about 50 to 90%. If the setting is too low, the load is liable to drop due to gravity at start. Suppose that the rated inverter current is 100%.	
280	Brake opening current detection time	0.3s	0 to 2s	Generally, set this parameter to about 0.1 to 0.3 s .	
281	Brake operation time at start	0.3s	0 to 5s	Set the mechanical delay time until the brake is loosened when Pr. 292 = " 7 or 17". Set the mechanical delay time until the brake is loosened + about 0.1 to 0.2 s when Pr. $292=$ " 8 or 18 ".	
282	Brake operation frequency	6 Hz	0 to 30Hz	Set the frequency to activate the mechanical brake by turning off the brake opening request signal (BOF). Generally, set this parameter to the Pr. 278 setting +3 to 4 Hz . Setting is enabled only when Pr. $282 \geq$ Pr. 278 .	
283	Brake operation time at stop	0.3s	0 to 5s	Set the mechanical delay time until the brake is closed + 0.1 s when Pr. 292 = "7 or 17 ". Set the mechanical delay time until the brake is closed + 0.2 to 0.3 s when Pr. $292=$ " 8 or 18 ".	
	Deceleration detection		0	Deceleration is not detected.	
284	function selection	0	1	If deceleration is not normal during deceleration operation, the inverter fault is provided.	
285	Overspeed detection frequency*	9999	0 to 30Hz	If (detected frequency) - (output frequency) \geq Pr. 285 during encoder feedback control, the inverter fault (E.MB1) is provided.	
			9999	Overspeed is not detected.	
292	Automatic acceleration/ deceleration	0	0	Normal operation mode Optimum acceleration/deceleration mode (Refer to the Instruction Manual)	
			3		
			5,6	Elevator mode (Refer to the Instruction Manual)	
			7	Brake sequence mode 1	Disabled when the
			8	Brake sequence mode 2	is selected
			11	Shortest acceleration/deceleration mode (Refer to the Instruction Manual)	
			17	Brake sequence mode 1	Enabled even if the second or third function is selected
			18	Brake sequence mode 2	

[^13]

CAUTION

When brake sequence mode is selected, automatic restart after instantaneous power failure is invalid.

- When using this function, set the acceleration time to 1 s or longer.
- Changing the terminal function using any of Pr. 178 to Pr. 189 , Pr. 190 to Pr. 196 may affect the other functions. Set parameters after confirming the function of each terminal.

(1) Set the brake sequence mode

- Select either Real sensorless vector control, vector control (speed control) or Advanced magnetic flux vector control. The brake sequence function is valid only when the External operation mode, External/PU combined operation mode 1 or Network operation mode is selected.
- Set "7(17) or 8(18)" (brake sequence mode) in Pr. 292.

To ensure more complete sequence control, it is recommended to set "7(17)" (brake opening completion signal input) in Pr. 292.

- Set "15" in any of Pr. 178 to Pr. 189 (input terminal function selection) and assign the brake opening completion signal (BRI) to the input terminal.
- Set "20 (positive logic)" or "120 (negative logic)" in any of Pr. 190 to Pr. 196 (output terminal function selection) and assign the brake opening request signal (BOF) to the output terminal.

(2) With brake opening completion signal input (Pr. $292=$ "7 or 17")

. When the start signal is input to the inverter, the inverter starts running. When the internal speed command reaches the value set in Pr. 278 and the output current is not less than the value set in Pr.279, the inverter outputs the brake opening request signal (BOF) after the time set in Pr. 280 has elapsed.
When the time set in Pr. 281 elapses after the brake opening completion signal (BRI) was activated, the inverter increases the output frequency to the set speed.

- When the inverter decelerates to the frequency set in Pr. 282 during deceleration, the inverter turns OFF the BOF signal and decelerates further to the frequency set in Pr.278. After electromagnetic brake operation completes and inverter recognizes the turn OFF of BRI signal, the inverter holds the frequency set in Pr. 278 for the time set in Pr.283. And after the time set in Pr. 283 passes, the inverter decelerates again. The inverter finally stops when its frequency reaches to Pr. 13 Starting frequency setting or 0.5 Hz , whichever is lower.

(3) Without brake opening completion signal input (Pr. $292=$ " 8 or 18")

- When the start signal is input to the inverter, the inverter starts running. When the internal speed command reaches the value set in Pr. 278 and the output current is not less than the value set in Pr.279, the inverter outputs the brake opening request signal (BOF) after the time set in Pr. 280 has elapsed.
When the time set in Pr. 281 elapses after the BOF signal is output, the inverter increases the output frequency to the set speed.
- When the inverter decelerates to the frequency set in Pr. 282 during deceleration, the inverter turns OFF the BOF signal and decelerates further to the frequency set in Pr.278. After the turn OFF of BOF signal, the inverter holds the frequency set in Pr. 278 for the time set in Pr.283. And after the time set in Pr. 283 passes, the inverter decelerates again. The inverter finally stops when its frequency reaches to Pr. 13 Starting frequency setting or 0.5 Hz , whichever is lower.

(4) Relation between Pr. 292 Automatic acceleration/deceleration and the RT, X9, or JOG signal

. The table below shows when the function of each input signal becomes available depending on the Pr. 292 setting.

Pr.292 setting	RT signal / X9 signal	JOG signal
0	Depending on the Pr.155 setting	Always available
3,5 to 8,11	Only during an inverter stop	Only during an inverter stop
17,18	Depending on the Pr. 155 setting	Only during an inverter stop

- The table below shows the relation between each input signal and the operating status depending on the Pr. 292 setting.

Pr. 292 setting	Input signal status		Operating status (Automatic acceleration/deceleration / Normal operation)	
			During an inverter stop	During inverter operation
0	-		Normal operation	Normal operation
3, 5 to 8, 11	JOG signal	OFF	Automatic acceleration/deceleration (JOG invalid) Normal operation (JOG valid)	Maintains the operating status before switching of the signal
	RT/X9 signal	OFF ON	Automatic acceleration/deceleration (RT/ X9 invalid) Normal operation (RT/X9 valid)	Maintains the operating status before switching of the signal
17, 18	JOG signal	OFF ON	Automatic acceleration/deceleration (JOG invalid) Normal operation (JOG valid)	Maintains the operating status before switching of the signal
	RT/X9 signal	OFF	Automatic acceleration/deceleration (RT/ X9 invalid)	Automatic acceleration/deceleration (RT/ X9 invalid)
		ON	Automatic acceleration/deceleration (RT/ X9 valid)	Automatic acceleration/deceleration (RT/ X9 valid)

(5) Protective functions

If any of the following errors occurs in the brake sequence mode, the inverter results in a fault, trips, and turns off the brake opening request signal (BOF).

Fault Display	Description
E.MB1	(Detection frequency) - (output frequency) > Pr.285 during encoder feedback control When Pr.285 Overspeed detection frequency $=9999$, overspeed is not detected.
E.MB2	Deceleration is not normal during deceleration operation from the set frequency to the frequency set in Pr.282. (when Pr.284 =1) (except stall prevention operation)
E.MB3	Brake opening request signal (BOF) turned on though the motor is at a stop. (gravity drop prevention function)
E.MB4	Although more than 2s have elapsed after the start command (forward or reverse rotation) is input, the brake opening request signal (BOF) does not turn on.
E.MB5	Although more than 2s have elapsed after the brake opening request signal (BOF) turned on, the brake opening completion signal (BRI) does not turn on.
E.MB6	Though the inverter had turned on the brake opening request signal (BOF), the brake opening completion signal (BRI) turned off midway.
E.MB7	Although more than 2s have elapsed after the brake opening request signal (BOF) turned off at a stop, the brake opening completion signal (BRI) does not turn off.

CAUTION

- During deceleration, inverter output is shut OFF when the frequency reaches Pr. 13 Starting frequency or 0.5 Hz , whichever is lower. For Pr. 278 Brake opening frequency, set a frequency equal to or higher than the Pr. 13 setting or 0.5 Hz .
- Overspeed detection (Pr.285) is valid under encoder feedback control (used with the FR-A7AP/FR-A7AL (option)) even if a value other than "7, 8, 17 or 18" is set in Pr. 292.
- Setting Pr. 278 Brake opening frequency too high activates stall prevention operation and may cause E.MB4.
- If the sum of the time between Pr. 13 Starting frequency and Pr. 278 Brake opening frequency + Pr. 280 Brake opening current detection time is more than 2 s , E.MB4 occurs.

- Additional notes for Instructions for UL and cUL

Motor overload protection
When using the electronic thermal relay function as motor overload protection, set the rated motor current in Pr. 9 Electronic thermal O/L relay.

CAUTION

- Motor over temperature sensing is not provided by the drive.

General precaution

CAUTION - Risk of Electric Shock -

The bus capacitor discharge time is 10 minutes. Before starting wiring or inspection, switch power off, wait for more than 10 minutes.
ATTENTION - Risque de choc électrique -
La durée de décharge du condensateur de bus est de 10 minutes. Avant de commencer le câblage ou l'inspection, mettez l'appareil hors tension et attendez plus de 10 minutes.

- SERIAL number check

Check the SERIAL number indicated on the inverter rating plate or package.
Refer to the inverter manual for the location of the rating plate.

Rating plate example

믐	3	9	000000
Symbol	Year	Month	Control number
	SERI	L (Seri	No.)

[^14]
FR-A701 Series

Instruction Manual Supplement

For the FR-A701 series manufactured in January 2015 or later, the following specifications are added.
Check the year and month of manufacture by the SERIAL number printed on the rating plate of the inverter.

- SERIAL number check

Refer to the inverter manual for the location of the rating plate.
Rating plate example

$\stackrel{\square}{\square}$	$\stackrel{5}{4}$	$\stackrel{1}{2}$	$\frac{\text { OOOOOO }}{\text { Symol }}$
	SERIAL		

The SERIAL consists of one symbol, two characters indicating production year and month, and six characters indicating control number.
The last digit of the production year is indicated as the Year, and the Month is indicated by 1 to $9, \mathrm{X}$ (October), Y (November), or Z (December).

In the following sections, $\square \mathbf{P M}$ indicates the functions that are driven by PM sensorless vector control.

1 PM sensorless vector control

Purpose	Parameters to be Set	Refer to Page	
To perform IPM parameter initialization	IPM parameter initialization	Pr. 998	4
To select the torque characteristic in a low-speed range	Low-speed range torque characteristics	Pr. 788	14
To adjust the gain for PM sensorless vector control	Adjusting the speed control gain	Pr. 820, Pr. 821	Chapter 4 of the Instruction Manual (Applied)

Highly efficient motor control and highly accurate motor speed control can be performed by using the inverter with an IPM (internal permanent magnet) motor, which is more efficient than an induction motor.
The motor speed is calculated based on the output voltage and current from the inverter. It does not require a speed detector such as an encoder. The inverter drives the IPM motor with the least required current when a load is applied in order to achieve the highest motor efficiency.

POINT

The following conditions must be met to perform PM sensorless vector control.

- For the motor model, IPM motor must be used.
- The motor capacity must be equal to or one rank lower than the inverter capacity.
- Single-motor operation (one motor run by one inverter) must be performed.
- The overall wiring length with the motor must be 100 m or less. (When the wiring length exceeds 30 m , offline auto tuning must be performed.)

CAUTION

- The speed setting range for an MM-CF IPM motor is between 0 and 200 Hz .
- The carrier frequency is limited during PM sensorless vector control. (Refer to page 17)
- Constant-speed operation cannot be performed in the low-speed range of $200 \mathrm{r} / \mathrm{min}$ or less under current synchronization operation. (Refer to page 14)
- During PM sensorless vector control, the RUN signal is output about 100ms after turning ON the start command (STF, STR). The delay is due to the magnetic pole detection.
- During PM sensorless vector control, the automatic restart after instantaneous power failure function operates only when an MM-CF IPM motor is connected. However, the frequency search may not be available at $2200 \mathrm{r} / \mathrm{min}$ or above. The restart operation cannot be performed until the motor speed drops to a frequency where the frequency search is available.

1.1 Setting procedure of PM sensorless vector control

I
This inverter is set for a general-purpose motor in the initial setting. Follow the following procedure to change the setting for the PM sensorless vector control.

Driving an MM-CF IPM motor

Perform IPM parameter initialization by selecting IPM in the parameter setting mode on the operation panel.* (Refer to page 3)

* Two IPM parameter initialization methods are available for MM-CF IPM motors; setting Pr. 998 IPM parameter initialization, and selecting i in (IPM parameter initialization) mode on the operation panel. One of the two methods can be selected.
To change to the PM sensorless vector control, perform IPM parameter initialization at first. If parameter initialization is performed after setting other parameters, some of those parameters will be initialized too. (Refer to page 6 for the parameters that are initialized.)

REMARKS

To use a motor capacity that is one rank lower than the inverter capacity, set Pr. 80 Motor capacity before performing IPM parameter initialization.
(1) PM sensorless vector control setting by selecting IPM in the parameter setting mode on the operation panel ($:$ p in)

POINT

The parameters required to drive an MM-CF IPM motor are automatically changed as a batch. (Refer to page 6)

Operation
example

Initialize the parameter setting for an MM-CF IPM motor by selecting IPM in the parameter setting mode on the operation panel.

Operation

1. Screen at power-ON
 The monitor display appears.

2. Parameter setting mode

Press (MODE to choose the parameter setting mode.
3. Selecting the parameter Turn \bigcirc until i \quad in (IPM parameter initialization) appears.
4. Displaying the setting Press (SET) to read the currently set value. " Ω " (initial value) appears.
5. Selecting the setting Turn \bigcirc to change it to the set value "3003".
6. Parameter setting Press (set to set. Turn \bigcirc to read another parameter. - Press (SET) to show the setting again. Press SET) twice to show the automatic parameter setting (AUTO).

Setting	Description
0	Parameter settings for a general-purpose motor
3003	Parameter settings for an IPM motor MM-CF (rotations per minute)

REMARKS

Performing IPM parameter initialization by selecting IPM in the parameter setting mode on the operation panel automatically changes the Pr. 998 IPM parameter initialization setting.
In the initial parameter setting, the capacity same as the inverter capacity is set in Pr. 80 Motor capacity. (Refer to page 18.) To use a motor capacity that is one rank lower than the inverter capacity, set Pr. 80 Motor capacity before performing IPM parameter initialization by selecting the mode on the operation panel.
To set a speed or to display monitored items in frequency, set Pr. 998. (Refer to page 4.)

(2) PM sensorless vector control display and PM sensorless vector control signal

P.RUN on the operation panel (FR-DU07) is lit and the PM sensorless vector control signal (IPM) is output during PM sensorless vector control.
For the terminal to output the PM sensorless vector control signal, assign the function by setting "57 (positive logic)" or "157 (negative logic)" in any of Pr. 190 to Pr. 196 (Output terminal function selection).

(3) Loss of synchronism detection

Operation Panel	E.SOT	E.E19\%	FR-PU04	Fault 14
Indication	PM		FR-PU07	Motor step out
Name	Loss of synchronism detection			
Description	Stops the output when the operation is not synchronized. (This function is only available under PM sensorless vector control.)			
Description	Check that the IPM motor is not driven overloaded. Check if a start command is given to the inverter while the IPM motor is coasting. Check if a motor other than the IPM motor (MM-CF series) is driven.			
Corrective action	Set the acceleration time longer. Reduce the load. If the inverter restarts during coasting, set Pr. 57 Restart coasting time \neq " 9999, ," and select the automatic restart after instantaneous power failure. Drive an IPM motor (MM-CF series).			

1.2 Initializing the parameters required for the PM sensorless vector control (Pr.998)
 \qquad

By performing IPM parameter initialization, PM sensorless vector control is selected and the parameters, which are required to drive an IPM motor, are selected. Initial settings and setting ranges of the parameters are adjusted automatically to drive an IPM motor.
Two IPM parameter initialization methods are available; setting Pr. 998 IPM parameter initialization, and selecting iff (IPM parameter initialization) mode on the operation panel. One of the two methods can be selected.

Parameter number	Name	Initial value	Setting range	Description	
998 *	IPM parameter initialization	0	0	Parameter settings for a generalpurpose motor (frequency)	Initial parameter settings required to drive a generalpurpose motor are set.
			3003	Parameter settings for an MM-CF IPM motor (rotations per minute)	Initial parameter settings required to drive an IPM motor are set.
			3103	Parameter settings for an MM-CF IPM motor (frequency)	
			8009	Parameter (rotations per minute) settings for an IPM motor other than MM-CF (after tuning) *2	
			8109	Parameter (frequency) settings for an IPM motor other than MM-CF (after tuning) *2	

[^15]- To use a motor capacity that is one rank lower than the inverter capacity, set Pr. 80 Motor capacity before performing IPM parameter initialization. By performing IPM parameter initialization, initial settings required to drive an IPM motor are set in parameters.
- When Pr. $998=$ " 3003 ," the monitor is displayed and the frequency is set using the motor rotations per minute. To use frequency to display or set, set $\operatorname{Pr} .998=$ " $3103 . "$
- Set Pr. $998=$ " 0 " to change the PM sensorless vector control parameter settings to the parameter settings required to drive a general-purpose motor.
- When using an IPM motor other than MM-CF, set Pr. $998=$ " 8009 or 8109 " to select the parameter settings required to perform PM sensorless vector control. The setting can be made after performing offline auto tuning for an IPM motor.

Pr. 998 Setting	Description	Operation IPM in the parameter setting mode
0 (initial value)	Parameter settings for a general-purpose motor (frequency)	i ワワf (IPM) \Rightarrow Write "0"
3003	Parameter settings for an IPM motor MM-CF (rotations per minute)	i คif (IPM) \Rightarrow Write "3003"
3103	Parameter settings for an IPM motor MM-CF (frequency)	-
8009	Parameter (rotations per minute) settings for an IPM motor other than MM-CF (after tuning)	-
8109	Parameter (frequency) settings for an IPM motor other than MM-CF (after tuning)	-

REMARKS

Make sure to set Pr. 998 before setting other parameters. If the Pr. 998 setting is changed after setting other parameters, some of those parameters will be initialized too. (Refer to "(2)" for the parameters that are initialized.)
To change back to the parameter settings required to drive a general-purpose motor, perform parameter clear or all parameter clear.
If the setting of Pr. 998 IPM parameter initialization is changed from "3003, 8009 (rotations per minute)" to "3103, 8109 (frequency)," or from "3103, 8109" to "3003, 8009," all the target parameters are initialized.
The purpose of Pr. 998 is not to change the display units. Use Pr. 144 Speed setting switchover to change the display units between rotations per minute and frequency. Pr. 144 enables switching of display units between rotations per minute and frequency without initializing the parameter settings.
Example) Changing the Pr. 144 setting between "6" and "106" switches the display units between frequency and rotations per minute.

(2) IPM parameter initialization list

The parameter settings in the following table are changed to the settings required to perform PM sensorless vector control by selecting PM sensorless vector control with the IPM parameter initialization mode on the operation panel or with Pr. 998 IPM parameter initialization setting. The changed settings differ according to the IPM motor specification (capacity).
Performing parameter clear or all parameter clear sets back the parameter settings to the settings required to drive a general-purpose motor.

Parameter	Name Pr. 998	Setting					Setting increments	
		Generalpurpose motor	IPM motor(rotations per minute)		IPM motor (frequency)			
		0 (Initial setting)	$\begin{gathered} 3003 \\ \text { (MM-CF) } \\ \hline \end{gathered}$	8009 (other than MM-CF)	$\begin{gathered} 3103 \\ \text { (MM-CF) } \end{gathered}$	8109 (other than MM-CF)	$\begin{array}{\|l\|} \hline 3003, \\ 8009 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 0,3103, \\ 8109 \end{array}$
1	Maximum frequency	120 Hz	3000r/min	-	200 Hz	-	$1 \mathrm{r} / \mathrm{min}$	0.01 Hz
4	Multi-speed setting (high speed)	60 Hz	2000r/min	Pr. 84	133.33 Hz	Pr. 84	1r/min	0.01 Hz
9	Electronic thermal O/L relay	Rated inverter current	Rated motor current (Refer to page 18)	-	Rated motor current (Refer to page 18)	-		.01A
13	Starting frequency	0.5 Hz	8r/min *4	Pr. $84 \times 10 \%$	0.5 Hz *5	Pr. $84 \times 10 \%$	1r/min	0.01 Hz
15	Jog frequency	5 Hz	200r/min	Pr. $84 \times 10 \%$	13.33 Hz	Pr. $84 \times 10 \%$	$1 \mathrm{r} / \mathrm{min}$	0.01 Hz
18	High speed maximum frequency	120 Hz	3000r/min	-	200 Hz	-	1r/min	0.01 Hz
20	Acceleration/deceleration reference frequency	60 Hz	2000r/min	Pr. 84	133.33 Hz	Pr. 84	1r/min	0.01 Hz
22	Stall prevention operation level	150\%	150\%				0.1\%	
37	Speed display	0	0				1	
55	Frequency monitoring reference	60 Hz	2000r/min	Pr. 84	133.33 Hz	Pr. 84	1r/min	0.01 Hz
56	Current monitoring reference	Rated inverter current	Rated motor current (Refer to page 18)	Pr. 859	Rated motor current (Refer to page 18)	Pr. 859	0.01A	
71	Applied motor	0	330 *1	-	330 *1	-	1	
80	Motor capacity	9999	$\begin{gathered} \hline \text { Motor capacity } \\ (\mathrm{MM}-\mathrm{CF}) * 2 \end{gathered}$	-	Motor capacity (MM-CF) *2	-	0.01 kW	
81	Number of motor poles	9999	8	-	8	-	1	
84	Rated motor frequency	60 Hz	2000r/min	-	133.33 Hz	-	1r/min	0.01 Hz
125 (903)	Terminal 2 frequency setting gain frequency	60 Hz	2000r/min	Pr. 84	133.33 Hz	Pr. 84	1r/min	0.01 Hz
126 (905)	Terminal 4 frequency setting gain frequency	60 Hz	2000r/min	Pr. 84	133.33 Hz	Pr. 84	1r/min	0.01 Hz
144	Speed setting switchover	4	108	Pr. $81+100$	8	Pr. 81	1	
240	Soft-PWM operation selection	1	0				1	
263	Subtraction starting frequency	60 Hz	2000r/min	Pr. 84	133.33 Hz	Pr. 84	1r/min	0.01 Hz
266	Power failure deceleration time switchover frequency	60 Hz	2000r/min	Pr. 84	133.33 Hz	Pr. 84	1r/min	0.01 Hz
374	Overspeed detection level	140 Hz	3150r/min	$\begin{gathered} \text { Pr. } 1(\text { Pr. 18) } \times \\ 105 \% \end{gathered}$	210 Hz	$\begin{gathered} \text { Pr. } 1(\text { Pr. 18) } \times \\ 105 \% \end{gathered}$	1r/min	0.01 Hz
386	Frequency for maximum input pulse	60 Hz	2000r/min	Pr. 84	133.33 Hz	Pr. 84	1r/min	0.01 Hz
390 *3	\% setting reference frequency	60 Hz	133.33 Hz	Pr. 84	133.33 Hz	Pr. 84	0.01 Hz	
505	Speed setting reference	60 Hz	133.33 Hz	Pr. 84	133.33 Hz	Pr. 84	0.01 Hz	
557	Current average value monitor signal output reference current	Rated inverter current	Rated motor current (Refer to page 18)	Pr. 859	Rated motor current (Refer to page 18)	Pr. 859	0.01A	
820	Speed control P gain 1	60\%	30\%				1\%	
821	Speed control integral time 1	0.333s	0.333s				0.001s	
824	Torque control P gain 1	100\%	100\%				1\%	
825	Torque control integral time 1	5 ms	20 ms				0.1 ms	
870	Speed detection hysteresis	0Hz	8r/min		0.5 Hz		1r/min	0.01 Hz
885	Regeneration avoidance compensation frequency limit value	6 Hz	200r/min	Pr. $84 \times 10 \%$	13.33 Hz	Pr. $84 \times 10 \%$	1r/min	0.01 Hz
893	Energy saving monitor reference (motor capacity)	Rated inverter capacity	Motor capacity (Pr. 80)				0.01 kW	
C14 (918)	Terminal 1 gain frequency (speed)	60 Hz	2000r/min	Pr. 84	133.33 Hz	Pr. 84	1r/min	0.01 Hz

*1 Setting Pr. 71 Applied motor $=$ one of " $333,334,8093,8094$ " does not change the Pr. 71 Applied motor setting.
*2 Setting Pr. 80 Motor capacity \neq "9999" does not change the Pr. 80 Motor capacity setting.
*3 This parameter can be set when FR-A7NL is mounted.
*4 200r/min when Pr. 788 Low-speed range torque characteristics $=$ " $0 "$
*5 13.33 Hz when Pr. 788 Low-speed range torque characteristics $=$ " 0 ".

REMARKS

If IPM parameter initialization is performed in rotations per minute (Pr. $998=" 3003 "$ or " 8009 "), the parameters not listed in the table above are also set and displayed in rotations per minute.

1.3 Offline auto tuning for an IPM motor (motor constant tuning)

(Pr.1, Pr.9, Pr.18, Pr.71, Pr.80, Pr.81, Pr.83, Pr.84, Pr.90, Pr.92, Pr.93, Pr.96, Pr.684, Pr.706, Pr.707, Pr.711, Pr.712, Pr.721, Pr.724, Pr.725, Pr.859) PM

The offline auto tuning for an IPM motor enables the optimal operation of an IPM motor.

- What is offline auto tuning?

Under PM sensorless vector control, setting motor constants automatically (offline auto tuning) enables optimal operation of motors even when motor constants vary or when the wiring distance is long. The offline auto tuning also enables the operation with an IPM motor other than MM-CF.

Parameter Number	Name	Initial Value	Setting Range	Description
1	Maximum frequency	120Hz	0 to 120 Hz	Set the upper limit of the output frequency.
9	Electronic thermal O/ L relay	Rated inverter current	0 to 500A	Set the rated motor current.
18	High speed maximum frequency	120Hz	120 to 400 Hz	Set when performing the operation at 120 Hz or more. (Limited at 300 Hz under PM sensorless vector control)
71	Applied motor	0	$\begin{gathered} 0 \text { to } 8,13 \text { to } 18,30,33,34,40, \\ 43,44,50,53,54,330,333, \\ 334,8093,8094 \end{gathered}$	Setting a motor type selects its thermal characteristic and the motor constant.
80	Motor capacity	9999	0.4 to 55kW	Set the applied motor capacity.
			9999	V/F control
81	Number of motor poles	9999	2, 4, 6, 8, 10	Set the number of motor poles.
			12, 14, 16, 18, 20	X18 signal-ON:V/F control Set $10+$ number of motor poles.
			9999	V/F control
83	Rated motor voltage	$\begin{gathered} \hline 200 / \\ 400 \mathrm{~V} \text { * } \end{gathered}$	0 to 1000V	Set the rated motor voltage (V).
84	Rated motor frequency	60 Hz	10 to 300 Hz	Set the rated motor frequency (Hz). (Limited at 120 Hz when Pr. 71 is set to a motor other than IPM)
90	Motor constant (R1)	9999	0 to 50Ω, 9999	Tuning data
92	Motor constant (L1)/daxis inductance	9999	0 to 50Ω, (0 to 1000 mH), 9999	(The value measured by offline auto tuning is automatically set.) 9999. Motor constant of the MM-CF IPM
93	Motor constant (L2)/qaxis inductance	9999	$\begin{gathered} 0 \text { to } 50 \Omega, \\ (0 \text { to } 1000 \mathrm{mH}), 9999 \end{gathered}$	motor. (Except 9999, the set value is the motor constant.)
96	Auto tuning setting/ status	0	0	Offline auto tuning is not performed
			1	Offline auto tuning is performed without motor running (other than MM-CF)
			11	Offline auto tuning is performed without motor running (MM-CF)
			101	Offline auto tuning by rotating a generalpurpose motor (no tuning during PM sensorless vector control)
684	Tuning data unit switchover	0	0	Internal data converted value
			1	Displayed in "A, Ω, mH, \%"
706	Induced voltage constant	9999	0 to $5000 \mathrm{mV} \cdot \mathrm{s} / \mathrm{rad}$	Adjust the constant if the current fluctuates during operation after tuning.
			9999	Constant value calculated based on the tuning data
707	Motor inertia (integer)	9999	10 to 999	Set the motor inertia.
			9999	Uses the inertia of the MM-CF IPM motor

Parameter Number	Name	Initial Value	Setting Range	Description
711	Motor d-axis inductance Ld decay ratio	9999	0 to 100\%, 9999	Tuning data (The value measured by offline auto tuning is automatically set.) 9999: Motor constant of the MM-CF IPM motor. (Except 9999, the set value is the motor constant.)
712	Motor q-axis inductance Lq decay ratio	9999	0 to 100\%, 9999	
721	Starting magnetic pole position detection pulse width	9999	0 to $6000 \mu \mathrm{~s}, 9999$	
724	Motor inertia (exponent)	9999	1 to 7	Set the motor inertia.
			9999	Uses the inertia of the MM-CF IPM motor
725	Motor protection current level	9999	0 to 500\%	Set the maximum current (OCT) level of the motor (\%).
			9999	Uses the maximum current of MM-CF
859	Torque current	9999	0 to 500A	Tuning data (The value measured by offline auto tuning is automatically set.)
			9999	Uses the constant of the MM-CF IPM motor

* The initial value differs according to the voltage level. ($200 \mathrm{~V} / 400 \mathrm{~V}$)

POINT

The settings are valid only under the PM sensorless vector control.

- When the wiring length between the inverter and the motor is long (30 m or longer as a reference), use the offline auto tuning function to drive the motor in the optimum operation characteristic.
- The offline auto tuning enables the operation with an IPM motor other than MM-CF.
- Tuning is enabled even when a load is connected to the motor. (As the load is lighter, tuning accuracy is higher. Tuning accuracy does not change even if the inertia is large.)
- Reading/writing of motor constants tuned by offline auto tuning are enabled. You can copy the offline auto tuning data (motor constants) to another inverter with the PU (FR-DU07/FR-PU07).
- The offline auto tuning status can be monitored with the PU (FR-DU07/FR-PU07/FR-PU04).
- Do not use an inverter with a surge voltage suppression filter (FR-ASF-H/FR-BMF-H) connected between the inverter and the motor.

(1) Before performing offline auto tuning

Check the following before performing offline auto tuning.

- The PM sensorless vector control should be selected.
- A motor should be connected. Note that the motor should be at a stop at a tuning start.
- The motor capacity should be equal to or one rank lower than the inverter capacity.
- The maximum frequency under PM sensorless vector control should be 300 Hz .
- Even if tuning is performed without motor running (Pr. 96 Auto tuning setting/status $=$ "11"), the motor may run slightly. Therefore, fix the motor securely with a mechanical brake, or before tuning, make sure that there will be no problem in safety if the motor runs. (Caution is required especially in vertical lift applications). Note that if the motor runs slightly, tuning performance is unaffected.
- Tuning is not available during position control under PM sensorless vector control.
(2) Setting

To perform tuning, set the following parameters about the motor.

Parameter Number	Name	Setting for an IPM motor other than MM-CF	Setting for MM-CF
80	Motor capacity	Motor capacity (kW)	Set by the IPM parameter initialization (Refer to page 4.)
81	Number of motor poles	Number of motor poles	
1(18)	Maximum frequency (High speed maximum frequency)	The maximum motor frequency (Hz)	
9	Electronic thermal O/L relay	Rated motor current (A)	
84	Rated motor frequency	Rated motor frequency (Hz)	
83	Rated motor voltage	Rated motor voltage (V)	Rated motor voltage (V) printed on the motor's rating plate.
707	Motor inertia (integer)	$\begin{gathered} \text { Motor inertia } \\ \mathrm{Jm}=P r .707 \times 10^{(-P r .724)}\left(\mathrm{kg} \cdot \mathrm{~m}^{2}\right) \end{gathered}$	9999 (Initial value)
724	Motor inertia (exponent)		
725	Motor protection current level	Maximum current (OCT) level of the motor (\%)	9999 (Initial value)
71	Applied motor	8093	333
96	Auto tuning setting/status	1	11

(3) Execution of tuning

CAUTION

- Before performing tuning, check the monitor display of the operation panel (FR-DU07) or parameter unit (FR-PU04/ FR-PU07) if the inverter is in the state ready for tuning. (Refer to 2) below) Turning ON the start command while tuning is unavailable starts the motor.
1)When performing PU operation, press FWD REV on the operation panel.

For External operation, turn ON the start command (STF signal or STR signal). Tuning starts.

REMARKS

Satisfy the required inverter start conditions to start offline auto tuning. For example, stop the input of MRS signal.

- To force tuning to end, use the MRS or RES signal or press
 on the operation panel.
(Turning the start signal (STF signal or STR signal) OFF also ends tuning.)
During offline auto tuning, only the following I/O signals are valid (initial value):
- Input signals <valid signal> STOP, OH, MRS, RT, RES, STF, STR
- Output terminal RUN, OL, IPF, FM, AM, A1B1C1

Note that the progress status of offline auto tuning is output in fifteen steps from AM and FM when speed and output frequency are selected.

- Do not perform ON/OFF switching of the second function selection signal (RT) during execution of offline auto tuning. Auto tuning is not executed properly.
- Setting offline auto tuning (Pr. 96 Auto tuning setting/status $=$ "1 or 11") will make pre-excitation invalid.

CAUTION

- Since the RUN signal turns ON when tuning is started, caution is required especially when a sequence which releases a mechanical brake by the RUN signal has been designed.
- When executing offline auto tuning, input the run command after switching ON the main circuit power (R/L1, S/L2, T/L3) of the inverter.
While Pr. $79=" 7, "$ turn the X 12 signal ON to tune in the PU operation mode.
2)Monitor is displayed on the operation panel (FR-DU07) and parameter unit (FR-PU07/FR-PU04) during tuning as below.

	Parameter Unit (FR-PU07/FR-PU04) Display	Operation Panel (FR-DU07) Display		
Pr. 96 setting	111	11		
(1) Setting	READ:List 1 --- STOP$\quad \begin{array}{r}\text { READ:List } \\ 11 \\ -- \text { STOP } \\ \hline\end{array}$			
(2) Tuning in progress				
(3) Normal end	IIIIIIIIIIIIIIIIIII\| TUNE 3 COMPLETION STF STOP PUTIIIIIIIIIIIIIIIIIII TUNE 13 COMPETION STF STOP PU			
(4) Error end (when the inverter protective function is activated)	$1 / I I I\\|I I I I I I I I I I I\\|$ TUNE ERROR STF STOP			

3)When offline auto tuning ends, press $\left(\frac{\text { STOP }}{\text { RESE }}\right)$ of the operation panel during PU operation. For External operation, turn OFF the start signal (STF signal or STR signal).
This operation resets the offline auto tuning and the PU's monitor display returns to the normal indication. (Without this operation, next operation cannot be started.)

REMARKS

The motor constants measured once in the offline auto tuning are stored as parameters and their data are held until the offline auto tuning is performed again.
Changing Pr. 96 setting from " 3 or 13" after tuning completion will invalidate the tuning data. In this case, tune again.
4)If offline auto tuning ended in error (see the table below), motor constants are not set.

Perform an inverter reset and restart tuning.

Error Display	Error Cause	Remedy
8	Forced end	Set "1" or "11" in Pr. 96 and perform tuning again.
9	Inverter protective function operation	Make setting again.
92	Converter output voltage has reached 75% of rated value.	Check for fluctuation of power supply voltage.
93	Calculation error A motor is not connected.	Check the motor wiring and make setting again.

5)When tuning is ended forcibly by pressing
or turning OFF the start signal (STF or STR) during tuning, offline auto tuning does not end properly. (The motor constants have not been set.)
Perform an inverter reset and restart tuning.

CAUTION

An instantaneous power failure occurring during tuning will result in a tuning error.
After power is restored, the inverter goes into the normal operation mode. Therefore, when STF (STR) signal is ON, the motor runs in the forward (reverse) rotation.
Any alarm occurring during tuning is handled as in the ordinary mode. Note that even if a retry operation has been set, retry is not performed.

- The set frequency monitor displayed during the offline auto tuning is 0 Hz .

\triangle CAUTION

Note that the motor may start running suddenly.

(4) Utilizing or changing offline auto tuning data

The data measured in the offline auto tuning can be read and utilized or changed.
<Operating procedure>
1)Set Pr. 71 according to the motor used.

Motor		Pr. 71 Setting
IPM motor	MM-CF	334
	Other than MM-CF	8094

2) In the parameter setting mode, read the following parameters and set desired values.

The display units of the read motor constants can be changed with Pr. 684 Tuning data unit switchover. Setting Pr. $684=" 1 "$ does not change the parameter settings.

Parameter Number	Name	Setting Increments		Read Value		Setting Range
		Pr. $684=0$	Pr. $684=1$	Pr. $71=334$	Pr. $71=8094$	
90	Motor constant (R1)	Internal data	0.001Ω	Tuned data *1	Tuned data *1	0 to ***, 9999
92	Motor constant (L1)/daxis inductance	Internal data	0.1 mH	9999 *2	Tuned data *1	0 to ***, 9999
93	Motor constant (L2)/qaxis inductance	Internal data	0.1 mH	9999 *2	Tuned data *1	0 to ***, 9999
711	```Motor d-axis inductance Ld decay ratio```	Internal data	0.1\%	9999 *2	Tuned data *1	0 to ***, 9999
712	Motor q-axis inductance Lq decay ratio	Internal data	0.1\%	9999 *2	Tuned data *1	0 to ***, 9999
721	Starting magnetic pole position detection pulse width	Internal data	1($\mu \mathrm{s}$)	9999 *2	Tuned data *1	0 to ***, 9999
859	Torque current	Internal data	0.01A	Tuned data *1	Tuned data *1	0 to ***, 9999

As the motor constants measured in the offline auto tuning have been converted into internal data (****), refer to the following setting example when making setting:
Setting example To slightly increase Pr. 90 value (5\%)
When Pr. 90 is displayed " 2516 ",
set 2642 , i.e. $2516 \times 1.05=2641.8$, in $\operatorname{Pr} .90$
(The value displayed has been converted into a value for internal use. Hence, simple addition of a given value to the displayed value has no significance.)
*2 Setting "9999" selects the IPM motor (MM-CF) constant.
If the current fluctuates after tuning, adjust the constant by referring to the induced voltage constant, which can be found in the data sheet.

Parameter Number	Name	Setting Range	Setting Increments	Initial Setting
706	Induced voltage constant	0 to 5000,9999	$0.1(\mathrm{mV} /(\mathrm{rad} / \mathrm{s}))$	9999 *

1.4 Applied motor (Pr. 71)

Setting of the used motor selects the thermal characteristic appropriate for the motor.
Setting is necessary when using a constant-torque motor. Thermal characteristic of the electronic thermal relay function suitable for the motor is set.
When PM sensorless vector control is selected, the motor constants (MM-CF etc.) necessary for control are selected as well.

Parameter Number	Name	Initial Value	Setting Range	Description
71	Applied motor	0	0 to 8, 13 to 18, 30, 33, $34,40,43,44,50,53,54$, $330,333,334,8093$, 8094	Selecting the standard motor or constant- torque motor sets the corresponding motor thermal characteristic.

(1) Set the motor to be used

Refer to the following list and set this parameter according to the motor used.

Pr. 71 Setting	Motor		Electronic thermal relay function operation characteristic	
			Constant torque	IPM
330*	IPM Motor MM-CF			O
333*	IPM Motor MM-CF	Select "offline auto tuning setting"		0
8093	IPM Motor (other than MM-CF)		0	
334*	IPM Motor MM-CF	Auto tuning data can be read, changed, and set		0
8094	IPM Motor (other than MM-CF)		O	

REMARKS

When performing offline auto tuning, set "3, 7, 8, 13, 17, 18, 33, 43,53, 333, 8093" in Pr. 71.
(Refer to page 7 for offline auto tuning)
For the 5.5 K and 7.5 K , the Pr. 0 Torque boost and Pr. 12 DC injection brake operation voltage settings are automatically changed according to the Pr. 71 setting as follows.

Pr.71	Standard Motor Setting $\mathbf{0 , 2 , 3}$ to 8, 40, 43, 44, $\mathbf{3 3 0 , 3 3 3 , 3 3 4 , 8 0 9 3 , 8 0 9 4}$	Constant Torque Motor Setting $\mathbf{1 , 1 3}$ to 18, 50, 53,54
$\operatorname{Pr.} 0$	3%	2%
$\operatorname{Pr.} 12$	4%	2%

1.5 Position control under PM sensorless vector control (Pr.800)

- In position control, speed commands, which are calculated to eliminate the difference between the command pulse (parameter setting) and the estimated feedback pulse, are output to rotate the motor.
- This inverter can perform simple position feed by contact input, position control by inverter simple pulse input, and position control by FR-A7AL pulse train input.

(1) Setting procedure

CAUTION

The carrier frequency is limited during PM sensorless vector control. (Refer to page 17.)
Position deviation may occur due to motor temperature changes. In such case, shut off the inverter outputs, and restart. The Z-phase outputs cannot be made under PM sensorless vector control. When Pr.419 = " 1 " is set to send positioning commands in pulses via a programmable controller positioning module and FR-A7AL, use the home position return operation that does not require Z-phase signals.

(2) Select the control method

Pr. 998	Pr. 998 Setting	Control Method	Control Type	Remarks
$\begin{gathered} \text { 3003, } 3103 \\ (\mathrm{MM}-\mathrm{CF}) \end{gathered}$	20 (Initial Value)	PM sensorless vector control	Speed control	-
	9		Test operation	-
	13		Position control	-
	14		Speed control/position control switchover	MC signal ON: position control MC signal OFF: speed control

The operation for the setting of " 20 " is performed when a value other than " 9,13 , or 14 " is set.

REMARKS

Perform position control under PM sensorless vector control only when using an MM-CF IPM motor with the low-speed range high-torque characteristic enabled (Pr.788 = "9999 (initial value)")
Position control is performed on the assumption of 4096 pulses/motor rotation.
Positioning accuracy 100 pulses/rev (no load)
Refer to Chapter 4 of the Instruction Manual (Applied) for the detail of the position control.

1.6 Low-speed range torque characteristics (Pr.788)

\square P M

Torque characteristics in a low-speed range can be changed.

Parameter Number	Name	Initial Setting	Setting Range	Operation
788	Low-speed range torque characteristics	999	0	Disables the low-speed range high-torque characteristic (current synchronization operation).
			Enables the low-speed range high-torque characteristic (high frequency superposition control)	

* Current synchronization operation is always performed for IPM motors other than MM-CF, even if "9999" is set.
(1) When the low-speed range high-torque characteristic is enabled ("9999" (initial value))
- The high frequency superposition control provides enough torque in the low-speed range operation.
- Refer to page 19 for the torque characteristics.

(2) When the low-speed range high-torque characteristic is disabled ("0")

- The current synchronization operation reduces much motor noise compared with the high frequency superposition control.
- The torque in a low-speed range is low. Use this setting for an operation with light start-up load.
- Refer to page 19 for the torque characteristics.

REMARKS

Position control under PM sensorless vector control is not available when the current synchronization operation is selected.

1.7 Setting the acceleration/deceleration time in the low-speed range (Pr.791, Pr.792) PM

Parameter Number	Name	$\begin{aligned} & \text { Initial } \\ & \text { Value } \end{aligned}$	Setting Range	Description
	Acceleration time in low-speed range	9999	0 to 3600/360s*	Set the acceleration time in a low-speed range (less than 10\% of the rated motor frequency).
			9999	The acceleration time set in Pr: 7 is applied. (When the second functions are enabled, the settings are applied.)
792 $\mathbf{P M}$	Deceleration time in low-speed range	9999	0 to 3600/360s*	Set the deceleration time in a low-speed range (less than 10\% of the rated motor frequency).
			9999	The deceleration time set in Pr. 8 is applied. (When the second functions are enabled, the settings are applied.)

* Depends on the Pr. 21 Acceleration/deceleration time increments setting. The initial value for the setting range is " 0 to 3600 s" and the setting increments is " 0.1 s ".

If torque is required in a low-speed range (less than 10% of the rated motor frequency), set Pr. 791 Acceleration time in low-speed range and Pr. 792 Deceleration time in low-speed range settings higher than the Pr. 7 Acceleration time and Pr. 8 Deceleration time settings so that the mild acceleration/deceleration is performed in the low-speed range. Such a setting is especially effective when the low-speed range high-torque characteristic is disabled ($\operatorname{Pr} .788=$ " 0 "). (For an operation with second acceleration/deceleration times, set the acceleration/deceleration times longer than the second acceleration/deceleration times.)

REMARKS

Set $\operatorname{Pr} .791$ higher than $\operatorname{Pr} .7$, and $\operatorname{Pr.} 792$ higher than $\operatorname{Pr} .8$. If set as $\operatorname{Pr} .791<\operatorname{Pr} .7$, the operation is performed as $\operatorname{Pr} .791=\operatorname{Pr} .7$. If set as Pr. $792<\operatorname{Pr} .8$, the operation is performed as Pr. $792=\operatorname{Pr} .8$.
Refer to page 6 for the rated motor frequency of MM-CF.

1.8 Braking operation selection for vector control, PM sensorless vector control (Pr.802)
 \qquad PM

- The pre-excitation operation selection is available under PM sensorless vector control.
- Select the braking operation when the pre-excitation is performed with Pr. 802 Pre-excitation selection from either zero speed control or servo lock.

Pr. 802 setting	Pre- excitation	Description
(initial value)	Zero speed control	It will try to maintain 0 r/min so the motor shaft will not rotate even when a load is applied. However, it will not return to its original position when the shaft moves due to external force. It will not perform position control, but operate only with the speed control.
1	Servo lock	It will try to maintain the position of the motor shaft even if a load is applied. When the shaft moves due to external force, it will return to its original position after the external force is removed. To perform the position control, this loop gain can be adjusted with Pr.422 Position control gain.

- The relation between the DC injection brake operation and pre-excitation operation is as follows.

Control method	Control mode	Pr. 802	Pr. 850	Deceleration stop	LX-ON	$\begin{gathered} \text { X13-ON } \\ \text { (Pr. } 11=\text { " } 8888 \text { ") } \end{gathered}$
V/F control	-	-	-	DC injection brake	-	DC injection brake
Advanced magnetic flux vector control	-	-	-	DC injection brake	-	DC injection brake
Real sensorless vector control	Speed	-	0	DC injection brake	Zero speed	Zero speed
		-	1	Zero speed		
		-	2	Magnetic flux decay output shutoff	Zero speed	Zero speed
	Torque	-	0	DC injection brake	Zero speed	Zero speed
		-	1	Zero speed		
		-	2	Magnetic flux decay output shutoff	Zero speed	Zero speed
Vector control	Speed	0	-	Zero speed	Zero speed	Zero speed
		1	-	Servo lock	Servo lock	Servo lock
	Torque	-	-	Zero speed	Zero speed	Zero speed
	Position	-	-	-	Servo lock	-
PM sensorless vector control, low-speed range hightorque mode disabled	Speed	-	-	DC injection brake	-	-
PM sensorless vector control, low-speed range hightorque mode enabled	Speed	0	-	Zero speed	Zero speed	-
		1	-	Servo lock	Servo lock	-
	Position	-	-	-	Servo lock	-

1.9 DC injection brake of the PM sensorless vector control

DC injection brake operation frequency will be fixed to 0 Hz at the time of PM sensorless vector control (low-speed range high-torque mode disabled).
<When the low-speed range high-torque characteristic is disabled (Pr. $788=$ " 0 ")>

REMARKS

The X13 signal is disabled during PM sensorless vector control.
Pr. 12 DC injection brake operation voltage is invalid during PM sensorless vector control.

1.10 PM sensorless vector control specification

Item	Specification	
Control method	Sensorless vector control Low-speed range: Control method in a low-speed range can be selected by parameter (high frequency superposition control (initial setting) / current synchronization operation)	
Starting torque	High frequency superposition control	150\% (Used in combination with MM-CF)
	Current synchronization operation	50\%
Speed control range	High frequency superposition control	1:1000 (Use a one rank higher inverter for the ratio of 1:1000)
	Current synchronization operation	1:10
Zero speed	High frequency superposition control	Possible (Use a one rank higher inverter for zero-speed 200\%)
	Current synchronization operation	Not available
Carrier frequency	High frequency superposition control	6 kHz (Pr. 72 = "0 to 9 "), 10 kHz (Pr. 72 = "10 to 13"), 14 kHz (Pr. 72 = "14, 15 ") (6 kHz in a low-speed range of 10 kHz or higher. 2 kHz is not selectable.)
	Current synchronization operation	$\begin{aligned} & 2 \mathrm{kHz}(\operatorname{Pr} .72=" 0 \text { to } 5 "), 6 \mathrm{kHz}(\operatorname{Pr.} 72=\text { " } 6 \text { to } 9 "), 10 \mathrm{kHz}(\operatorname{Pr} .72=" 10 \text { to } 13 "), 14 \mathrm{kHz} \\ & (P r .72=-14,15 ") \\ & (6 \mathrm{kHz} \text { in a low-speed range of } 10 \mathrm{kHz} \text { or higher.) } \end{aligned}$
Position control	High frequency superposition control	Possible
	Current synchronization operation	Not available
Offline auto tuning for an IPM motor	Possible	
Applicable motor	Mitsubishi MM-CF series IPM motors (3.5 to 7.0 kW)IPM motors other than MM-CF (tuning required) (no capacity limit)	

1.11 Motor specification

(1) Specifications

Item Motor		2000r/min Series		
		MM-CF352(C)(B)	MM-CF502(C)	MM-CF702(C)
Compatible inverter	FR-A721-■	-	5.5K	7.5K
		$5.5 \mathrm{~K} * 6$	7.5K * 6	11 K * 6
Continuous characteristics *1	Rated output [kW]	3.5	5.0	7.0
	Rated torque [$\mathrm{N} \cdot \mathrm{m}$]	16.70	23.86	33.41
Rated speed *1 [r/min]		2000		
Max. speed [r/min]		3000		
Instantaneous permissible speed [r/min]		3450		
Max. torque [$\mathrm{N} \cdot \mathrm{m}$]		33.41	47.73	66.82
$\begin{aligned} & \text { Inertia moment } J \times 5 \\ & {\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]} \end{aligned}$		$\begin{gathered} 85.6 \\ (89.0) \end{gathered}$	120.0	160.0
Recommended ratio of load inertia moment to motor shaft inertia moment ${ }^{2}$		50 times max.		
Rated current [A]		12.5	20.5	27.0
Insulation rank		Class F		
Structure		Totally-enclosed, self-cooling (protective system:IP44*3, IP65*3, *4)		
Environmental conditions	Surrounding air temperature and humidity	$-10 C^{\circ}$ to $+40 C^{\circ}$ (non-freezing) $\cdot 90 \%$ RH or less (noncondensing)		
	Storage temperature and humidity	$-20 \mathrm{C}^{\circ}$ to $+70 \mathrm{C}^{\circ}$ (non-freezing) • 90% RH or less (noncondensing)		
	Ambience	Indoors (no direct sunlight), free from corrosive gas, flammable gas, oil mist, dust and dirt		
	Altitude	Max. 1000m above sea level		
	Vibration	$\mathrm{X}: 9.8 \mathrm{~m} / \mathrm{s}^{2}, \mathrm{Y}: 24.5 \mathrm{~m} / \mathrm{s}^{2}$		
Mass *5 [kg]		19 (28)	27	36

*1 When the power supply voltage drops, we cannot guarantee the above output and rated speed.
*2 When the load torque is 20% of the motor rating. The permissible load inertia moment ratio is smaller when the load torque is larger. Consult us if the load inertia moment ratio exceeds the above value.
*3 This does not apply to the shaft through portion.
*4 Value for MM-CFप2C
*5 The value for MM-CFD2B is indicated in parentheses.
*6 Applicable one-rank higher inverters for the lifted low-speed range torque operation.

(2) Torque characteristics

Low-speed range hightorque characteristic	Torque characteristic
$\begin{aligned} & \text { Enabled } \\ & \text { (Pr. } 788 \text { = } \\ & \text { "1") } \end{aligned}$	With one rank higher inverter
Disabled (Pr. 788 = "0")	

2 Speed detection hysteresis (Pr.870)

- This function prevents chattering of the speed detection signals.

Parameter Number	Name	Initial Value	Setting Range	Description
870	Speed detection hysteresis	$0 \mathrm{~Hz}^{*}$	0 to 5 Hz	Set the hysteresis width for the detected frequency.

* Performing IPM parameter initialization changes the settings. (Refer to page 6)

Output
frequency (Hz)

When an output frequency fluctuates, the following signals may repeat ON/OFF (chatters).

- Up to frequency (SU)
- Speed detection (FB, FB2, FB3)
- Low speed output (LS)

Setting hysteresis to the detected frequency prevents chattering of these signals.

Example of the speed detection signal (FB)

REMARKS

Setting a higher value to this parameter slows the response of frequency detection signals (SU, FB, FB2, FB3, and LS).
The ON/OFF logic for the LS signal is opposite for the FB signal.

3 Extended parameter setting ranges (Pr. 263, Pr. 505, Pr. 885)

- The setting ranges of the following parameters have been extended.

(1) Power failure-time deceleration-to-stop function

Parameter Number	Name	Initial Value	Setting Range	Description
$\mathbf{2 6 3}$	Subtraction starting frequency	60 Hz	0 to 400 Hz	When output frequency \geq Pr. 263 Decelerate from the speed obtained from output frequency minus Pr. 262. When output frequency $<$ Pr. 263 Decelerate from output frequency

(2) Speed display and speed setting

Parameter Number	Name	Initial Value	Setting Range	Description
$\mathbf{5 0 5}$	Speed setting reference	60 Hz	1 to 400 Hz	Set the reference speed for Pr. 37.

(3) Regeneration avoidance function

Parameter Number	Name	Initial Value	Setting Range	Description
$\mathbf{8 8 5}$	Regeneration avoidance compensation frequency limit value	6 Hz	0 to 30 Hz	Set the limit value of frequency which rises at activation of regeneration avoidance function.
		9999	Frequency limit invalid	

4 Break point setting for droop control (Pr.994, Pr.995)

Set Pr. 994 and Pr. 995 to have a break point on a droop compensation frequency line. Setting a break point allows the inverter to raise the droop compensation frequency for light-load (no load) operation without raising it for heavy-load operation.

Parameter Number	Name	Initial Value	Setting Range	Description
994	Droop break point gain	9999	0.1 to 100%	Set the changing droop amount as a percentage value of the rated motor frequency.
		9999	No function	
995	Droop break point torque	100%	0.1 to 100%	Set the torque where the droop amount is changed.

CAUTION

The droop break point function is disabled when any of the following conditions is met. (Linear compensation by Pr. 286 is performed.)

- Pr. $995=$ " 100% (initial value)"
- Pr. 286 < Pr. 994
- Pr. 994 < Pr. $995 \times$ Pr. $286 / 100 \%$

5 Setting multiple parameters as a batch (Pr.999)

Parameter settings are changed as a batch. Those include communication parameter settings for the Mitsubishi human machine interface (GOT) connection, rated frequency settings of $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$, and acceleration/deceleration time increment settings.
Multiple parameters are changed automatically. Users do not have to consider each parameter number. (Automatic parameter setting mode)

Parameter Number	Name	Initial Value	Setting Range	Description
999 *1	Automatic parameter setting	9999 *2	10	GOT initial setting (PU connector)
			11	GOT initial setting (RS-485 terminals)
			20	50 Hz rated frequency
			21	60 Hz rated frequency
			30	Acceleration/deceleration time (0.1s increment)
			31	Acceleration/deceleration time (0.01s increment)
			9999	No action

*1 This parameter allows its setting to be changed in any operation mode even if " 0 (initial value)" is set in Pr. 77 Parameter write selection. *2 The read value is always "9999."

(1) Automatic parameter setting (Pr.999)

- Select which parameters to be automatically set, and set that to Pr. 999. Multiple parameter settings are changed automatically. Refer to page 23 for the list of parameters that are changed automatically.

$\begin{aligned} & \hline \text { Pr. } 999 \\ & \text { setting } \end{aligned}$		Description	Operation in the automatic parameter setting mode
10	Automatically sets the communication parameters for the GOT connected with a PU connector		GLiF G (AUTO) \rightarrow Eaif (GOT) \rightarrow Writ
11	Automatically sets the communication parameters for the GOT connected with RS-485 terminals		-
20	50 Hz rated frequency	Sets the related parameters of the rated frequency according to the power supply frequency	
21	60 Hz rated frequency		-
30	0.1 s increment	Changes the setting increments of acceleration/deceleration time parameters without changing acceleration/deceleration settings	-
31	0.01s increment		

REMARKS

If the automatic setting is performed, the selected settings including the changed parameter settings will be changed.

(2) List of automatically-set parameters

The following tables show which parameters are changed in each of the automatic parameter settings.
CAUTION
If the automatic setting is performed with Pr. 999 or the automatic parameter setting mode, the listed settings including the changed parameter settings (changed from the initial setting) will be automatically changed. Before performing the automatic setting, confirm that changing the listed parameters will not cause any problem.

- GOT initial setting (PU connector) (Pr.999 = "10")

Parameter	Name	Initial value	Automatically set to	Refer to
79	Operation mode selection	0	1	Chapter 4 of the Instruction Manual (Applied)
118	PU communication speed	192	192	
119	PU communication stop bit length	1	10	
120	PU communication parity check	2	1	
121	Number of PU communication retries	1	9999	
122	PU communication check time interval	9999	9999	
123	PU communication waiting time setting	9999	Oms	
124	PU communication CR/LF selection	1	1	
340	Communication startup mode selection	0	0	

REMARKS

Always perform an inverter reset after the initial setting.

- GOT initial setting (RS-485 terminals) (Pr. 999 = "11")

Parameter	Name	Initial value	Automatically set to	Refer to
79	Operation mode selection	0	0	Chapter 4 of the Instruction Manual (Applied)
332	RS-485 communication speed	96	192	
333	RS-485 communication stop bit length	1	10	
334	RS-485 communication parity check selection	2	1	
335	RS-485 communication retry count	1	9999	
336	RS-485 communication check time interval	Os	9999	
337	RS-485 communication waiting time setting	9999	Oms	
340	Communication startup mode selection	0	1	
341	RS-485 communication CR/LF selection	1	1	
549	Protocol selection	0	0	

REMARKS

Always perform an inverter reset after the initial setting.

Rated frequency (Pr. $999=$ " $20(50 \mathrm{~Hz}), 21(60 \mathrm{~Hz}) ")$

Parameter	Name	Initial value	Pr. 999 = "21"	$\text { Pr. } 999 \text { = "20" }$ Automatic parameter setting	Refer to
3	Base frequency	60 Hz	60 Hz	50 Hz	Chapter 4 of the Instruction Manual (Applied)
4	Multi-speed setting (high speed)	60 Hz	60 Hz	50 Hz	
20	Acceleration/deceleration reference frequency	60 Hz	60 Hz	50 Hz	
37	Speed display	0	0		
55	Frequency monitoring reference	60 Hz	60 Hz	50 Hz	
66	Stall prevention operation reduction starting frequency	60 Hz	60 Hz	50 Hz	
116	Third output frequency detection	60 Hz	60 Hz	50 Hz	
125 (903)	Terminal 2 frequency setting gain frequency	60 Hz	60 Hz	50 Hz	
126 (905)	Terminal 4 frequency setting gain frequency	60 Hz	60 Hz	50 Hz	
263	Subtraction starting frequency	60 Hz	60 Hz	50 Hz	
266	Power failure deceleration time switchover frequency	60 Hz	60 Hz	50 Hz	
386	Frequency for maximum input pulse	60 Hz	60 Hz	50 Hz	
390*	\% setting reference frequency	60 Hz	60 Hz	50 Hz	FR-A7NL manual
505	Speed setting reference	60 Hz	60 Hz	50 Hz	Chapter 4 of the Instruction Manual (Applied)
808	Forward rotation speed limit	60 Hz	60 Hz	50 Hz	
C14 (918)	Terminal 1 gain frequency (speed)	60 Hz	60 Hz	50 Hz	

* This parameter can be set when the option FR-A7NL is mounted.

Acceleration/deceleration time increment (Pr. $999=$ "30(0.1s) or 31(0.01s)")

Parameter	Name	Initial set increment	Pr.999 = " $30 "$	Pr.999 = "31" Automatic parameter setting	Refer to
$\mathbf{7}$	Acceleration time	0.1 s	0.1 s	0.01 s	
$\mathbf{8}$	Deceleration time	0.1 s	0.1 s	0.01 s	
$\mathbf{1 6}$	Jog acceleration/deceleration time	0.1 s	0.1 s	0.01 s	
$\mathbf{2 1}$	Acceleration/deceleration time increments	1	$0 *$	$1{ }^{*}$	
$\mathbf{4 4}$	Second acceleration/ deceleration time	0.1 s	0.1 s	0.01 s	
$\mathbf{4 5}$	Second deceleration time	0.1 s	0.1 s	0.01 s	
$\mathbf{1 1 0}$	Third acceleration/ deceleration time	0.1 s	0.1 s	0.01 s	
$\mathbf{1 1 1}$	Third deceleration time	0.1 s	0.1 s	0.01 s	
$\mathbf{2 6 4}$	Power-failure deceleration time 1	0.1 s	0.1 s	0.01 s	
$\mathbf{2 6 5}$	Power-failure deceleration time 2	0.1 s	0.1 s	Chapter 4 of the Instruction Manual (Applied)	
$\mathbf{7 9 1}$	Acceleration time in low- speed range	0.1 s	0.1 s	0.01 s	
$\mathbf{7 9 2}$	Deceleration time in low- speed range	0.1 s	0.1 s	0.01 s	

* The set value is changed for Pr. 21.

REMARKS

When a parameter is set as the acceleration/deceleration time (0.1 s), the 0.01 s increment is dropped.
When a parameter is set as the acceleration/deceleration time (0.01 s), the parameters are limited at the maximum value of the parameter setting range. For example, Pr. $7=$ " 361.0 s " when 0.1 s increment is selected, and Pr. $7=$ "360.00s" when 0.01s increment is selected.

6 Setting to disable E.OLT during stop-on-contact control

You can set the following parameter so that E.OLT (stall prevention stop) will not be activated during stop-on-contact control.

Parameter Number	Name	Initial Value	Setting Range	Description	
270	Stop-on contact/ load torque highspeed frequency control selection	0	0	Normal operation	
			1	Stop-on-contact control	
			2	Load torque high speed frequency contro	
			3	Stop-on-contact+load torque high speed frequency control	
			11	Stop-on-contact control	E.OLT invalid under stop-on-contact control
			13	Stop-on-contact+load torque high speed frequency control	

7 Acceleration/deceleration time switching frequency (Pr. 147)

When output frequency reaches Pr. 147 Acceleration/deceleration time switching frequency or higher, the acceleration/deceleration time automatically switches to Pr. 44 Second acceleration/deceleration time and Pr. 45 Second deceleration time settings.
The RT signal is not necessary for switching the acceleration/deceleration time.

Parameter Number	Name	Initial Value	Setting Range	Description
147	Acceleration/ deceleration time switching frequency	9999	0 to 400 Hz	Frequency when automatically switching to the acceleration/deceleration time of Pr. 44 and Pr. 45.
	9999	No function		

- When the RT signal (X9 signal) turns ON, the acceleration/deceleration time switches to the second (third) acceleration/ deceleration time even when the output frequency has not reached the Pr. 147 setting. Priority of switching is X9 signal > RT signal > Pr. 147 setting.
- If the Pr. 147 setting is lower than Pr. 10 DC injection brake operation frequency or Pr. 13 Starting frequency setting, the acceleration/deceleration time switches to the Pr. 44 (Pr. 45) setting when the output frequency exceeds the Pr. 10 or Pr. 13 setting.

Pr. 147 Setting	Acceleration/Deceleration Time	Description		
9999 (initial value)	Pr. 7, Pr. 8	No automatic switching of the acceleration/deceleration time		
0.00 Hz	Pr. 44, Pr. 45	Second acceleration/deceleration time from a start		
$0.01 \mathrm{~Hz} \leq$ Pr. $147 \leq$ Set frequency	Output frequency $<$ Pr. 147 $:$ Pr. 7, Pr. 8	Acceleration/deceleration time automatic switching		
Pr. $147 \leq$ Output frequency				
$:$ Pr. 44, Pr. 45			\quad	No automatic switching, since
:---				
outpequency $<$ Pr. 147				
ouvequency will not reach the				

- Switching frequency for each control method

Control Method	Switching frequency
V/F control	Output frequency
Advanced magnetic flux vector control	Output frequency before the slip compensation
Real sensorless vector control	Estimated speed converted as frequency
Vector control, encoder feedback control	Actual motor speed converted as frequency

8 USB automatic recognition (Pr. 551 PU mode operation command source selection = "9999")

FR-A701 can automatically recognize the USB connection and switch the command source during PU operation mode.

Parameter Number	Name	Initial Value	Setting Range	Description
$\mathbf{5 5 1}$ *	PU mode operation command source selection	9999	1	RS-485 terminals are the command source when PU operation mode.
		2	PU connector is the command source when PU operation mode.	
		3	USB connector is the command source when PU operation mode.	
		USB automatic recognition Normally, the PU connector is the command source. When USB is connected, the USB connector is the command source.		

* This parameter allows its setting to be changed in any operation mode even if " 0 (initial value)" is set in Pr. 77 Parameter write selection. When a communication option is installed, parameter setting is always enabled.

9 Modbus-RTU communication stop bit length selection (Pr. 333, Pr. 334)

- The stop bit length can be selected for the Modbus-RTU communication.
- When parity checking is not performed (Pr. $334 R S-485$ communication parity check selection $=$ " 0 "), the stop bit length can be selected with Pr. 333 RS-485 communication stop bit length.

Parameter number	Name	Initial value	Setting range	Description	
333	RS-485 communication stop bit length	1	0	Stop bit length 1 bit	Valid when Pr. 334 = "0"
			1	Stop bit length 2 bits	
			10	Stop bit length 1 bit	
			11	Stop bit length 2 bits	
334	RS-485 communication parity check selection	2	0	Without parity check Stop bit length according to Pr. 333	
			1	With odd parity Stop bit length 1 bit	
			2	With even parity Stop bit length 1 bit	

10 Plug-in option compatibility

(1) FR-A7AZ

The motor temperature detection signal (Y55) and the motor temperature monitor output of the plug-in option FR-A7AZ is supported. For the details of FR-A7AZ, refer to the Instruction Manual of FR-A7AZ.

(2) FR-A7AD

The plug-in option FR-A7AD is supported. The 0 V voltage calibration request signal (X83) and the during 0V calibration signal (Y83) can be used for 0 V calibration of the high speed analog output. For the details of FR-A7AD, refer to the Instruction Manual of $F R-A 7 A D$.

(3) FR-A7NCE

For the details of FR-A7NCE, refer to the Instruction Manual of FR-A7NCE.
The communication option FR-A7NCE is supported. The following monitor items are assigned to the remote registers RWrn+71 and RWrn+72. (Refer to page 40 of the Instruction Manual of FR-A7NCE.)

Address	Description	
	Upper 8 bits	Lower 8 bits
RWrn+71	Output power (with regenerative display)	
RWrn+72	Cumulative regenerative power	

For the details of FR-A7NCE, refer to the Instruction Manual of FR-A7NCE

(4) FR-A7NF

The communication option FR-A7NF is supported. When the FR-A7NF is used for the FR-A701 series, the inverter is operated in the PU operation interlock (X12 signal) specification. For the details of FR-A7NF, refer to the Instruction Manual of $F R-A 7 N F$.

(5) FR-A701 dedicated monitor code / fault code for communication options

The FR-A701 dedicated monitor codes and the fault codes when the communication options are used are as shown below.

- Monitor code

Code Number		Monitor Description	

- Fault code (fault data)

Fault code (data)	Fault indication (description)	Fault name
HF4	E.4	Fault 4 (Converter overcurrent)
HF8	E.8	Fault 8 (Power supply fault)
HFA	E.10	Fault 10 (Converter transistor protection thermal operation (electronic thermal))
HFF	E.15	Fault 15 (Convertor circuit fault)

11 Regenerative operation stop signal (X75 signal)

The converter operation can be stopped by turning ON the X 75 signal.

$\begin{aligned} & \text { Parameter } \\ & \text { Number } \end{aligned}$	Name	Initial Value	Initial signal	Setting Range
178	STF terminal function selection	60	STF (Forward rotation command)	$\begin{aligned} & 0 \text { to } 9,12 \text { to } 20,22 \text { to } 28,42 \text { to } \\ & 44,60,62,64 \text { to } 69,74,75, \\ & 9999 \end{aligned}$
179	STR terminal function selection	61	STR (Reverse rotation command)	$\begin{aligned} & 0 \text { to } 9,12 \text { to } 20,23 \text { to } 28,42 \text { to } \\ & 44,61,62,64 \text { to } 69,74,75 \text {, } \\ & 9999 \end{aligned}$
180	RL terminal function selection	0	RL (Low-speed operation command)	0 to 9,12 to 20,22 to 28,42 to 44, 62, 64 to $69,74,75,9999$
181	RM terminal function selection	1	RM (Middle-speed operation command)	
182	RH terminal function selection	2	RH (High-speed operation command)	
183	RT terminal function selection	3	RT (Second function selection)	
184	AU terminal function selection	4	AU (Terminal 4 input selection)	$0 \text { to } 9,12 \text { to } 20,22 \text { to } 28,42 \text { to }$ $44,62 \text { to } 69,74,75,9999$
185	JOG terminal function selection	5	JOG (Jog operation selection)	0 to 9,12 to 20,22 to 28,42 to 44, 62, 64 to $69,74,75,9999$
186	CS terminal function selection	6	CS (Electronic bypass function)	
187	MRS terminal function selection	24	MRS (Output stop)	
188	STOP terminal function selection	25	STOP (Start self-holding selection)	
189	RES terminal function selection	62	RES (Inverter reset)	

- The converter operation stops when the X 75 signal is turned ON during an inverter stop.
- When the regenerative status is entered during a converter stop, the protective function (E.OV \square) is activated due to overvoltage, and the inverter trips.
- To apply the X 75 signal status to the converter operation, it is necessary to stop the inverter.

REMARKS

If the X 75 signal is turned ON while the inverter is running and remains ON , the X 75 signal will be valid after the inverter stops.
If the inverter is reset by turning ON the RES signal while the converter operation is stopped by the X 75 signal, the converter stopped status is retained even while the reset is being processed.

12 Support for the PU operation mode of the brake sequence function

The brake sequence function is enabled when either the PU operation mode or the External/PU combined operation mode 2 is selected.

13 Parameter for manufacturer setting

- Pr. 414 to Pr. 417, Pr. 498, Pr. 506 to Pr. 515 are parameters for manufacturer setting. Do not set.
- The setting value "50" of Pr. 178 to Pr. 189 (input terminal function selection) is for manufacturer setting. Do not set.

[^0]: For differences and compatibility between the FR-A701 series and FR-A700 series, refer to page 196.

[^1]: - When the inverter capacity is larger than the motor capacity, select an MCCB and a magnetic contactor according to the inverter model and cable according to the motor output.
 - When the breaker on the inverter input side trips, check for the wiring fault (short circuit), damage to internal parts of the inverter, etc. Identify the cause of the trip, then remove the cause and power on the breaker.

[^2]: - Do not turn off the control power (terminals R1/L11 and S1/L21) with the main circuit power (R/L1, S/L2, T/L3) on. Doing so may damage the inverter. Make up a circuit which will switch off the main circuit power supply terminals R/L1, S/L2, T/L3 when the control circuit power supply terminals R1/L11, S1/L21 are switched off.
 - Be sure to use the inverter with the jumpers across terminals R/L1 and R1/L11 and across terminals S/L2 and S1/L21 removed when supplying power from other sources. The inverter may be damaged if you do not remove the jumper.
 - The voltage should be the same as that of the main control circuit when the control circuit power is supplied from other than the input side of the MC.
 - When separate power is supplied from R1/L11 and S1/L21, the power capacity necessary for the 15 K or lower is 90 VA , for the 18.5 K or higher is 100 VA .

 If the main circuit power is switched OFF (for 0.1 s or more) then ON again, the inverter resets and a fault output will not be held.

[^3]: - Vector control (speed control, torque control, position control), orientation control, encoder feedback control [8] Refer to Chapter 4 of the Instruction Manual (Applied).

[^4]: Models surrounded by black borders and 400 V class are developed upon receipt of order．
 ＊1 The maximum speed is $2400 \mathrm{r} / \mathrm{min}$ ．
 ＊2 80% output in the high－speed range．（The output is reduced when the speed is $2400 \mathrm{r} / \mathrm{min}$ or more．）
 ＊3 90% output in the high－speed range．（The output is reduced when the speed is $1000 \mathrm{r} / \mathrm{min}$ or more．）

[^5]: -Motor SF-JR 4P
 Carrier frequency: 14.5 kHz
 . Used wire: $2 \mathrm{~mm}^{2}$, 4 cores
 Cabtyre cable

[^6]: * Use Pr. 178 to Pr. 189 to assign the terminals used for the X18 and MC signal. (Refer to Chapter 4 of the Instruction Manual (Applied).)

[^7]: * For other settings of Pr. 71, refer to Chapter 4 of the Instruction Manual (Applied).

[^8]: Performing easy gain tuning with larger inertia than the specified value during vector control may cause malfunction such as hunting. In addition, when the motor shaft is fixed with servo lock or position control, bearing may be damaged. To prevent these, make gain adjustment by manual input without performing easy gain tuning.

[^9]: *1 It is recommended to install a device to monitor voltage for checking the power supply voltage to the inverter
 *2 One to two years of periodic inspection cycle is recommended. However, it differs according to the installation environment. Consult us for periodic inspection.

[^10]: *1 Use an FFT to measure the output voltage accurately. A tester or general measuring instrument cannot measure accurately.
 *2 When the carrier frequency exceeds 5 kHz , do not use this instrument since using it may increase eddy-current losses produced in metal parts inside the instrument, leading to burnout. If the wiring length between the inverter and motor is long, the instrument and CT may generate heat due to line-to-line leakage current.
 *3 When the setting of Pr. 195 ABC1 terminal function selection is positive logic
 *4 A digital power meter (designed for inverter) can also be used to measure.

[^11]: Note)1. Install the motor on the floor and use it with the shaft horizontal.

[^12]: * Read and write from communication with PU connector only is enabled.

[^13]: * When exercising vector control with the FR-A7AP/FR-A7AL (option), this parameter changes to excessive speed deviation detection frequency. (For details, refer to the Instruction Manual.)

[^14]: The SERIAL consists of one symbol, two characters indicating production year and month, and six characters indicating control number.
 The last digit of the production year is indicated as the Year, and the Month is indicated by 1 to $9, X$ (October), Y (November), or Z (December.)

[^15]: *1 This parameter allows its setting to be changed in any operation mode even if "0 (initial value)" is set in Pr. 77 Parameter write selection.
 *2 To use an IPM motor other than MM-CF, offline auto tuning must be performed for the IPM motor.

